Press-room / Digest
Pseudomonas phage MD8: genetic mosaicism and challenges of taxonomic classification of lambdoid bacteriophages
Fundamental questions of the evolution of viral genomes are the most important topic of virological research. As a result of the joint work of virologists from the Laboratory of Molecular Bioengineering of the IBCh RAS and the Limnological Institute of the RAS, a group of bacteriophages of the dangerous pathogen Pseudomonas was identified, the genomes of these bacterial viruses were studied, and it was shown that their formation was greatly influenced by multiple horizontal transfers, which led to pronounced genetic mosaicism. Scientists also put forward hypotheses about the origin of the new group and proposed basic principles for the taxonomic classification of lambdoid phages. The results are published in the International Journal of Molecular Sciences. Learn more
The secreted protein disulfide isomerase Ag1, lost by ancestors of poorly regenerating vertebrates, is required for Xenopus laevis tail regeneration
As is known, unlike cold-blooded vertebrates, warm-blooded vertebrates are not able to regenerate such complex structures as a limb or tail. Earlier, researchers from the Laboratory of Molecular Bases of Embryogenesis IBCH RAS proposed a hypothesis about the relationship between the weakening of regenerative abilities in warm-blooded animals and the loss of some genes that regulate regeneration in cold-blooded animals. In support of this hypothesis, we showed that there are indeed genes essential for the regeneration among the found genes lost by warm-blooded vertebrates, particularly the gene for the secreted disulfide isomerase Ag1. Strong activation of this gene on 1 and 2 days post-amputation of the tail in a model object, the frog Xenopus laevis tadpoles, indicated its essential role at the beginning of regeneration processes. It was shown that knockdown of ag1 reduces the ability to regenerate the amputated tail. At the same time, this ability can be restored either by overexpression of ag1 or by the addition of its recombinant protein to the tadpoles. This work was published in Frontiers in Cell and Developmental Biology journal. Learn more
Mechanism of coelenterazine chromophore photoinactivation from Beroe abissycola photoprotein is proposed
Scientists from IBCh RAS with colleagues from Photobiology Lab (IBP SB RAS) elucidated the structures of Beroe abissycola photoprotein’s chromophore photoinactivation products and proposed a mechanism of the photoinactivation process. The similarity of chemical transformations of photoprotein and GFP-like fluorescent protein chromophores was demonstrated for the first time. The results are published in Organic Letters. The project was funded by the RScF grant № 17-14-01169p. Learn more
Spotlight on the protein corona of liposomes
Liposomes are an established drug delivery platform that has paved the way to clinic for nanomedicine drugs. In the body, interactions of liposomes, as well as other drug delivery vehicles, are mediated by the complex dynamic layer of plasma proteins adsorbed on the surface, the protein corona. The review summarizes the data on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the corona in vivo. It critically assesses protein corona isolation and analysis techniques and offers a classification of the approaches to exploitation of the protein corona—rather than elimination thereof—based on the bilayer composition–protein corona composition–molecular interactions–biological performance relationship.
Essential role of zinc ions in TLR1 receptor activation
Toll-like receptors are the key players of the innate immune response. Despite the numerous studies and huge amount of data regarding these proteins, the structural basis of their functioning has not yet been clearly elucidated. Scientists from IBCh RAS, together with their colleagues from Moscow Institute of Physics and Technology and Changchun Institute of Applied Chemistry (China) discovered the essential role of zinc in the functioning of Toll-like receptor 1 and proposed possible mechanisms of zinc-mediated receptor activation. The work was funded by the RFBR grant 20-34-70024 and published in Communications Biology.