Cancer gene expression profiles associated with clinical outcomes to chemotherapy treatments.
Machine learning (ML) methods still have limited applicability in personalized oncology due to low numbers of available clinically annotated molecular profiles. This doesn't allow sufficient training of ML classifiers that could be used for improving molecular diagnostics. We collected a database of gene expression profiles associated with clinical responses on chemotherapy for 2786 individual cancer cases. Among them seven datasets included RNA sequencing data (for 645 cases) and the others – microarray expression profiles. The cases represented breast cancer, lung cancer, low-grade glioma, endothelial carcinoma, multiple myeloma, adult leukemia, pediatric leukemia and kidney tumors. Chemotherapeutics included taxanes, bortezomib, vincristine, trastuzumab, letrozole, tipifarnib, temozolomide, busulfan and cyclophosphamide.
Список научных проектов, где отмечена публикация
- -Выявление факторов, препятствующих успешной HER-таргетной терапии при раке молочной железы и разработка противоопухолевого препарата, связывающего HER-лиганды (January 6, 2018 December 31, 2022). . Grant, RSF.