Membranes (Basel), 2023, 13(4)

Genomic Insights into Bacterial Resistance to Proline-Rich Antimicrobial Peptide Bac7

Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a modest toxicity toward mammalian cells attract much attention as new templates for the development of antibiotic drugs. However, a comprehensive understanding of mechanisms of bacterial resistance development to PrAMPs is necessary before their clinical application. In this study, development of the resistance to the proline-rich bovine cathelicidin Bac7 derivative was characterized in the multidrug-resistant clinical isolate causing the urinary tract infection. Three Bac7-resistant strains with ≥16-fold increase in minimal inhibitory concentrations (MICs) were selected by serially passaging after four-week experimental evolution. It was shown that in salt-containing medium, the resistance was mediated by inactivation of the SbmA transporter. The absence of salt in the selection media affected both dynamics and main molecular targets under selective pressure: a point mutation leading to the amino acid substitution N159H in the WaaP kinase responsible for heptose I phosphorylation in the LPS structure was also found. This mutation led to a phenotype with a decreased susceptibility to both the Bac7 and polymyxin B. Screening of antimicrobial activities with the use of a wide panel of known AMPs, including the human cathelicidin LL-37 and conventional antibiotics, against selected strains indicated no significant cross-resistance effects.

IBCH: 10650
Ссылка на статью в журнале: https://www.mdpi.com/2077-0375/13/4/438
Кол-во цитирований на 07.2024: 1
Данные статьи проверены модераторами 2023-05-02

Список научных проектов, где отмечена публикация

  1. -Поиск новых ингибиторов бактериальных рибосом среди защитных пептидов животных и изучение их механизма действия (July 1, 2021 — June 1, 2023). Panteleev P.V.. Grant, RSF.