ОТЗЫВ

официального оппонента на диссертацию Топольяна Артема Павловича «Стабильные карбокатионы как масс-спектрометрические метки для детекции биомолекул», представленную на соискание ученой степени кандидата химических наук по специальности 02.00.10 — «Биоорганическая химия»

Актуальность избранной темы диссертации

В последние десятилетия масс-спектрометрия зарекомендовала себя универсальным аналитическим методом, широко используемым в самых различных сферах практической деятельности человека - от допингконтроля, детектирования пико- и фемтограммовых количеств веществ – до рутинного контроля за ходом реакции в лабораториях органического синтеза вместо тонкослойной хроматографии. Масс-спектрометрия по-прежнему остается одним из наиболее актуальных и быстро развивающихся областей химии. Одним из приоритетных направлений развития масс-спектрометрии является решение задач создания новых аналитических методов, и в частности – разработка способов повышения чувствительности/предела обнаружения веществ масс-спектрометрическими методами. Одним из наиболее известных и логичных приемов, способствующих решению дериватизация Дериватизация вопроса, является аналита. позволяет улучшить «летучесть» вещества в масс-спектрометре, и тем самым понизить предел детектирования. С другой стороны, химическая модификация аналита, направленная на введение катионных или легко ионизируемых в условиях регистрации масс-спектра групп («меток»), также повышает чувствительность И приводит В результате появлению легко К обнаруживаемых сигналов, поскольку экспериментально было установлено, что интенсивность сигнала катиона в масс-спектре коррелирует с увеличением стабильности карбокатиона. Диссертационное исследование соискателя ставит задачу разработки методов синтеза новых массспектрометрических меток на стабильных карбокатионов, а также изучение

возможности их использования для обнаружения в аналите соединений с функциональными амино-И меркаптогруппами. Ввведение спектрометрических меток ныне широко используется на практике для решения обширного круга задач. Учитывая высокий потенциал метода дериватизации, основанного на введении катионоидных групп субстрат, анализируемый широкие перспективы использования И предлагаемых соединений подходов ДЛЯ анализа cаминомеркаптогруппами, тему диссертационного исследования следует признать несомненно актуальной.

Степень обоснованности научных положений, выводов и рекомендаций, их достоверность

В диссертации Топольяна А. П. разработан ряд научных положений и рекомендаций, имеющих важное научное и практическое значение.

частности, решена практическая задача синтеза и введения стабильных карбокатионных меток, предложен и опробован на широком круге субстратов (на аминогликозидных антибиотиках, биоактивных тиолах др.) способ дериватизации, основанный И на введении триарилциклопропенилиевого и триарилметильного катионных фрагментов в молекулы, получены библиотеки масс-спектрометричесикх меток. Автором обоснован предложен остроумный способ использования массспектрометрических меток для кодирования информации.

Разработанные выводы, положения и рекомендации обоснованы с помощью современных экспериментальных методов, а также путем тщательного анализа литературных данных. Следует отметить, что автор, помимо собственно масс-спектрометрии, использовал широкую палитру экспериментальных методов — здесь и тонкий органический синтез, ЯМР-спектроскопия (включая двумерные методы), ИК и УФ-спектрометрия, методы квантовой химии. Основные научные результаты диссертации опубликованы в рецензируемых научных журналах, входящих в перечень

изданий, утвержденный Минобрнауки России для опубликования основных научных результатов диссертаций (4 статьи), представлены в одном патенте РФ, а также прошли апробацию в форме докладов на научных конференциях различного уровня. Публикации достаточно полно представляют материал диссертационного исследования.

Научная новизна

По мнению оппонента, наиболее важные научные результаты (научная новизна) диссертации состоят в следующем:

- Предложен и синтезирован универсальный реагент для введения тритильных и пиксильных меток в анализируемые соединения, включая полимеры и дендримеры;
- Предложен оригинальный способ кодирования информации с помощью масс-спектрометрических меток;
- -Предложен способ детектирования низкомолекулярных и летучих аминов, основанный на введении трифенилциклопропенильных меток, определен предел детектирования для продуктов дериватизации, установлена зависимость интенсивности масс-спектрометрических пиков триарилциклопропенилиевых карбокатионов от структуры арильного заместителя;
- Предложен способ дериватизации первичных аминов трис(2,6диметоксифенил)метилиевым катионом, успешно продемонстрирована применимость метода для анализа аминогликозидных антибиотиков, фосфатидилэтаноламинов, пептидов и различных соединений с меркаптогруппой;

Практическая значимость результатов исследования

В диссертации разработаны новые эффективные способы дериватизации и масс-спектрометрического определения соединений, содержащих первичную аминогруппу или меркаптогруппу. В качестве объектов для дериватизации были опробованы амины, аминокислоты, гормоны,

лекарственные препараты. Получены и охарактеризованы библиотеки масс-Изучена спектрометрических меток. возможность использования карбокатионных меток для анализа смеси первичных и вторичных аминов, а также дифференциации изомерных первичных и вторичных аминов. В целом, практическая значимость работы состоит в эффективном решении проблемы масс-спектрометрического анализа практически важных соединений, что имеет исключительное значение прикладных ДЛЯ аналитических исследований. Практически важными представляются также чисто синтетические находки автора диссертации, заключающиеся в разработке и оптимизации методов получения карбокатионных меток или их прекурсоров.

Структура, объем и содержание диссертации и автореферата

Работа построена традиционно для химических диссертаций, и включает список сокращений, введение, три главы (обзор литературы, результаты и обсуждение авторских исследований, экспериментальную часть), выводы, список литературы и приложение (масс- и ЯМР спектры). Диссертация имеет довольно большой (для кандидатских диссертаций) объем — 218 страниц (без приложений 201 страницу), содержит 82 рисунка и 6 таблиц. Список литературы весьма обширен и представлен 483 литературными источниками.

Литературный обзор (суммарно 220 ссылок) вполне соответствует фокусу интересов и теме исследований автора, и имеет предметом рассмотрения методы дериватизации молекул заряженными/ионогенными масс-спектрометрическими метками.

Диссертация, равно как и автореферат, написаны очень хорошим слогом, богато иллюстрированы; вообще оформление оставляет самые благоприятные впечатления.

Однако объем диссертации в целом представляется несколько завышенным. Во многом это связано с обширным перечнем обработанных и цитируемых литературных источников; автор, по мнению оппонента, иной раз излишне скрупулезно подходит к анализу литературных источников, и

уделяет слишком большое внимание второстепенным вопросам, не имеющим принципиального значения (например, «..Появляются всё новые монографии и учебники, в которых обобщаются достижения в данной области [2–76].», с. 6 диссертации). Здесь можно было вполне обойтись наиболее важными источниками, что позволило бы уменьшить объем работы. Для иллюстрации широты использования методов дериватизации автором приведено больше 20 источников, которые упорядочены хронологически, и имеют в составе не только обзоры и монографии, но и рядовые исследовательские статьи («Дериватизация широко применяется в МС [91–117].» Стр. 7 диссертации). Метод лазерной десорбции/ионизации МАLDI представлен во введении 8 ссылками ([78–85], стр. 6 диссертации). С одной стороны, это демонстрирует глубочайший уровень проработки и владения материалом, тщательное внимание к деталям, с другой — сильно перегружает работу. Диссертация написана прекрасным языком, но иногда излишне пространно.

Хотя эти недостатки не являются принципиальными, их устранение позволило бы существенно сократить объем рукописи и в большей степени высветить основные достоинства работы.

Глава 2 состоит из двух подразделов — 2.1 Отщепляемые массспектометрические метки, и 2.2. Неотщепляемые масс-спектометрические метки. В разделе 2.1 обсуждаются способы создания и введения тритильных и трифенилциклопропенильных меток, комбинаторный синтез библиотеки производных, показана возможность дериватизации метками полимеров и дендримеров (с использованием популярного *click*-подхода — азидалкинового [3+2]-циклоприсоединения). Наиболее интересным и многообещающим в этом разделе представляется предложенный способ двоичного кодирования информации с помощью масс-спектрометрических меток. Перспективы практического использования такого подхода пока неясны, но они несомненны.

В этом же разделе автор отдает должное классической органической химии, и обсуждает оптимальные пути конструирования

трифенилциклопропенильной системы, масс-спектрометрические свойства результаты, полученные при проведении тетрафторбората трифенилциклопропенилия с первичными аминами и малононитрилом. Здесь надо отметить, что полученные данные весьма интересны с позиций синтетической химии, хотя фигурирующая в выводах (см. Автореферат, стр. 22) формулировка («Обнаружена неизвестная ранее перегруппировка трифенилциклопропенилиевого катиона под действием аминов») несколько первичных неточна: взаимодействие солей циклопропенилия с первичными аминами изучалось и ранее, а аналогичные описанным 1-азабутадиенам 29 (по нумерации автореферата) или 2.49 (по нумерации диссертации) структуры фигурируют в литературе, причем получаются почти тем же способом (см., например Yoshida, Z.; Hirai, H.; Miki, S.; Yoneda, S. Trithiocyclopropenium ion as a building block for nitrogen heterocycle synthesis // Tetrahedron. – 1989. – Vol. 45. – № 10. – P. 3217-3231, https://doi.org/10.1016/S0040-4020(01)80147-2, или обзорную работу Komatsu, T. Kitagawa. Cyclopropenylium Cations, Cyclopropenones, and Heteroanalogues Recent Advances // Chem. Rev. 2003, 103, 1371-1427). Похожая реакция с малононитрилом также описана в литературе (см. обзор A. J. Fatiadi. New applications of malononitrile in organic chemistry, part II // Synthesis. – 1978. – No. 4. – P. 241).

В разделе 2.2 описано преимущественно использование трис(2,6-диметоксифенил)метильного катиона для дериватизации первичной аминогруппы и меркаптогруппы широчайшего круга низкомолекулярных биоактивных субстратов.

В Экспериментальной части (глава 3) приводятся достаточно подробные методики экспериментов и описание характеристик полученных веществ, методики снабжены схемами и формулами, что существенно облегчает восприятие. Содержание автореферата достаточно полно отражает основные результаты диссертационной работы.

Замечания по диссертации и автореферату

- 1. Основное замечание это указанная выше перегруженность работы по объему за счет избыточного цитирования. Автор приводит в перечне цитируемой литературы списки ссылок на масс-спектрометрические журналы, обильно цитирует не самые существенные/информативные источники.
- 2. Как в диссертации, так и автореферате присутствуют неизбежные «присутстуют» (C. 21 опечатки, например: автореферата), 12. «Рис. «дитиогликолиевой» (там же), Взаимодействие трифенилциклопропенилиевого катиона с малонодинитриром» (С. 12 автореферата), в диссертации на стр. 63 в заголовке подраздела **«**2.1.1 Отщепляемые пропущено слово «метки» спектрометрические на основе тритильного катиона», и ряд других.
- 3. Нумерация соединений по автореферату и диссертации довольно сильно разнится, что несколько затрудняет параллельное чтение.
- 4. В работе используется несколько нетрадиционных аббревиатур: ИЭР вместо привычного и используемого ESI, химическая ионизация при атмосферном давлении (ХИАД) вместо APCI (при этом сокращение MALDI автор не переводит).

Заключение

Перечисленные выше замечания не носят критического характера. Диссертация Топольяна Артема Павловича является завершенной научно-квалификационной работой, в которой на основании выполненных автором исследований разработаны теоретические положения, совокупность которых можно квалифицировать как научное достижение — разработана общая методология дериватизации и масс-спектрометрического определения биомолекул, содержащих первичную аминогруппу или меркаптогруппу, с помощью стабильных карбокатионных меток — а также содержит решение прикладных аналитических и синтетических задач, имеющих практически важный результат.

образом, ПО актуальности задачи, теоретической экспериментальной проработанности, достоверности результатов, новизне и полученным практически важным результатам диссертационная работа Топольяна Артема Павловича "Стабильные карбокатионы биомолекул" спектрометрические детекции метки ДЛЯ полностью соответствует требованиям, предъявляемым к кандидатским диссертациям в соответствии с пп. 9-14 «Положения о присуждении учёных степеней», утверждённого постановлением Правительства РФ № 842 от 24.09.2013 г. (с изменениями Постановления Правительства Р Φ^+ от 24.04.16 г. $N_{\rm P}$ 335, в ред. Постановления Правительства РФ от 02.08.2016 г. № 748), а автор работы, Топольян Артем Павлович - безусловно заслуживает присуждения ученой степени кандидата химических наук по специальности 02.00.10 -«биоорганическая химия».

Официальный оппонент, доктор химических наук по специальности 02.00.03 — «Органическая химия», заведующий кафедрой органической химии и технологий Федерального государственного бюджетного образовательного учреждения высшего образования «Кубанский государственный университет» Доценко Виктор Викторович

12.06.2017 г.

ул. Ставропольская 149, 350040 г. Краснодар, Российская Федерация

Телефон: +7-989-237-27-76

E-mail: victor_dotsenko_@mail.ru

Подпись В.В.Доценко заверяю, ученый секретарь

ученый секретары

Касьянова Екатерина Михайловна

Tellud