Министерство науки и высшего образования Российской Федерации (МИНОБРНАУКИ РОССИИ) ИНСТИТУТ БИООРГАНИЧЕСКОЙ ХИМИИ им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук (ИБХ РАН)

На правах рукописи

Гиголаев Андрей Михайлович

«Молекулярные основы селективности пептидных поровых блокаторов калиевых каналов»

Специальность – 1.4.9 – Биоорганическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Москва, 2023 г.

Работа выполнена в лаборатории молекулярных инструментов для нейробиологии Федерального государственного бюджетного учреждения науки Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук

Научный руководитель –	Василевский Александр Александрович, кандидат химических наук,
Официальные оппоненты:	Шайтан Алексей Константинович, доктор физико- математических наук, член-корреспондент Российской академии наук, доцент кафедры биоинженерии биологического факультета Федерального государственного бюджетного образовательного учреждения высшего образования Московский государственный университет имени М. В. Ломоносова
	Амахин Дмитрий Валерьевич, кандидат биологических наук, ведущий научный сотрудник Федерального государственного бюджетного учреждения науки Институт эволюционной физиологии и биохимии им. И.М. Сеченова Российской академии наук

Ведущая организация –

Федеральное государственное бюджетное учреждение науки Институт цитологии Российской академии наук

Защита состоится 6 декабря 2023 г. в 11 ч 00 мин. на заседании Диссертационного совета 24.1.037.01 Федерального государственного бюджетного учреждения науки Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук по адресу: Москва, ул. Миклухо-Маклая, 16/10.

С диссертацией можно ознакомиться в библиотеке и на сайте ИБХ РАН (www.ibch.ru).

Автореферат разослан _____ 2023 г.

Ученый секретарь Диссертационного совета

д.ф.-м.н. В.А. Олейников

Общая характеристика работы

Актуальность работы

Потенциал-чувствительные калиевые каналы (К_V-каналы) являются самой большой группой ионных каналов; у человека насчитывается 40 генов, кодирующих основную αсубъединицу. Зрелый канал состоит из четырех α-субъединиц, а также может включать в свой состав четыре вспомогательные β-субъединицы. Каждая α-субъединица состоит из трансмембранной и цитоплазматической частей. Трансмембранная часть, в свою очередь, состоит из шести трансмембранных сегментов (S1–S6; Рис. 1). Сегменты S1–S4 формируют потенциал-чувствительный домен, который отвечает за реагирование канала на изменение мембранного потенциала. Сегменты S5 и S6 от всех четырех α-субъединиц образуют общий поровый домен, который формирует собственно пору канала.

Рисунок 1. Схема строения K_v-каналов. Слева представлена диаграмма αсубъединицы. В сегменте S4 (сенсоре потенциала) отмечены положительные заряды. Р поровая петля. Справа изображена пора канала, вид с внеклеточной стороны.

 K_V -каналы являются важными участниками различных физиологических процессов, в частности: передача потенциала действия, регуляция клеточного объема, иммунного ответа, клеточного цикла и апоптоза. Подсемейство K_V 1-каналов, или Shaker-подобных каналов млекопитающих, содержащее восемь изоформ, представляет интерес как объект исследования, поскольку, помимо выполняемых физиологических функций, с ними ассоциированы различные заболевания. Так, мутации в генах каналов K_V 1.1, 1.2 и 1.6 могут приводить к атаксии и эпилепсии. Канал K_V 1.3 экспрессируется не только в нервной ткани, но еще и на поверхности Т-лимфоцитов, а его гиперэкспрессия приводит к аутоиммунным, воспалительным и онкологическим заболеваниям.

Для изучения К_v-каналов в норме и патологии необходимы селективные лиганды, которые способны узнавать отдельные изоформы. Примером таких соединений являются токсины из яда скорпионов, в частности пептидные поровые блокаторы К_v-каналов. В настоящее время уже существует ряд селективных лигандов, однако зачастую природа их специфичности неизвестна. Поиск детерминант селективности представляет актуальную задачу для разработки новых лигандов К_v-каналов.

Цель и задачи исследования

Цель: сконструировать и получить селективные лиганды потенциал-чувствительных калиевых каналов K_v1 и определить детерминанты их селективности.

Для достижения этой цели были поставлены следующие задачи:

- Построить молекулярные модели взаимодействия пептидных поровых блокаторов с потенциал-чувствительными калиевыми каналами. Провести анализ моделей и предложить модификации в структуру блокаторов с целью увеличения их селективности.
- Получить рекомбинантные пептиды с предложенными модификациями в бактериальной системе экспрессии.
- Провести анализ полученных пептидов на потенциал-чувствительных калиевых каналах методами электрофизиологии.
- 4. Определить детерминанты селективности пептидов по отношению к отдельным изоформам калиевых каналов.

Научная новизна и практическая значимость работы

Ранее при последовательном хроматографическом разделении яда скорпиона *Mesobuthus eupeus* были обнаружены токсины MeKTx11-1 и 3, которые проявляли селективность к каналу $K_V 1.2$, но в разной степени. Молекулярное моделирование, проведенное нами, позволило пояснить, почему эти два токсина, различающиеся всего двумя аминокислотными остатками (а.о.), по-разному действуют на канал $K_V 1.2$. Далее мы использовали компьютерный эксперимент не просто для объяснения наблюдаемой селективности блокаторов, а и для предсказания необходимых аминокислотных замен для изменения селективности пептидов.

Мы использовали два подхода. Во-первых, с помощью мутагенеза известных токсинов скорпионов MeKTx13-3 и харибдотоксина (ChTx) были получены селективные лиганды каналов K_v1.1–1.3. Во-вторых, на основе пептида из пшеницы, не проявляющего активность в отношении K_v1-каналов, были получены селективные блокаторы K_v1.3 и 1.6.

Наши данные показывают, что в большинстве случаев искомой селективности удается добиться путем увеличения количества контактов между пептидом и целевым каналом. Однако иногда замены могут приводить к неожиданному эффекту, когда конформация пептида изменяется, и происходит перераспределение контактов. Мы считаем, что для достижения наилучшего результата перед получением рекомбинантных пептидов и их тестированием необходимо провести один или несколько раундов моделирования комплексов с использованием молекулярной динамики (МД).

Полученные нами селективные лиганды каналов $K_V 1.1-1.3$ и 1.6 могут быть использованы как молекулярные инструменты исследования этих белков в норме и патологии. В частности, с их помощью можно изучить биологическую функцию каналов, селективно блокируя выбранную изоформу. Флуоресцентно-меченые аналоги селективных лигандов позволят визуализировать изучаемые каналы в биологических образцах, локализовать их в тканях организма. Кроме того, полученные нами пептиды могут служить основой для разработки новых лекарственных средств для терапии заболеваний, фармакологической мишенью при которых являются $K_V 1$ -каналы.

Личный вклад автора

Диссертант лично провел бо́льшую часть работ по получению рекомбинантных пептидов, участвовал в электрофизиологических экспериментах и анализе данных молекулярного моделирования, а также подготовке статей к публикации.

Апробация работы и научные публикации

Работа прошла апробацию на открытом семинаре отдела молекулярной нейробиологии ИБХ РАН. Результаты работы изложены в шести статьях, опубликованных в рецензируемых журналах, и представлены на четырех конференциях.

Структура и объем диссертации

Диссертационная работа изложена на 122 страницах, содержит 36 рисунков и 15 таблиц, имеет традиционную структуру и состоит из следующих разделов: введение, обзор литературы, материалы и методы, результаты и обсуждение, выводы, список литературы, состоящий из 192 источников, и приложение.

Общее содержание работы

Для того, чтобы изучать Ку-каналы, необходимы селективные лиганды, способные распознавать их отдельные изоформы. Есть несколько способов получения таких лигандов, но мы остановились на трех из них. Первый способ — это поиск перспективных соединений в природных источниках. В нашем случае таким источником является яд скорпионов, он богат различными полипептидными токсинами. Некоторые из них блокируют Ку-каналы и представляют собой пептиды длиной $\approx 30{-}40$ а.о. с укладкой типа дисульфидстабилизированных α-спирали и β-слоя (СSα/β) и тремя дисульфидными связями (порядок: С¹-С⁴, С²-С⁵, С³-С⁶). Последовательной очисткой с использованием методов хроматографии можно добиться получения токсинов в индивидуальном состоянии, которые затем можно исследовать различными методами, в частности электрофизиологии. Второй способ — получение селективных лигандов на основе уже известных токсинов при помощи мутагенеза. В этом случае мутации могут быть предложены путем моделирования или сравнения аминокислотных последовательностей или пространственных структур. Такие пептиды можно получать в системах экспрессии и затем также исследовать методами электрофизиологии. Третий способ — получение активных лигандов на основе каких-либо неактивных молекул, используемых в качестве каркаса. В этом случае можно применять методы предсказания аминокислотных замен для придания таким каркасам искомых В.М. Табакмахером (лаборатория свойств. Модели строились моделирования биомолекулярных систем и группа анализа структуры мембранных белков in silico ИБХ РАН) и анализировались совместно. Активность токсинов изучалась в лаборатории токсикологии и фармакологии Католического университета г. Лёвен (Бельгия) при непосредственном участии диссертанта.

Изучение селективности токсинов MeKTx11-1 и 3 из яда скорпиона Mesobuthus eupeus

Ранее в результате хроматографического разделения яда скорпиона *M. eupeus* были получены токсины, названные MeKTx11-1 и 3. Они проявляли селективность к изоформе $K_V 1.2$, но в разной степени, при том, что отличаются всего двумя а.о. Для установления причин различий в аффинности, мы решили получить производные этих токсинов. О.В. Некрасовой (лаборатория инженерии белка ИБХ РАН) были наработаны рекомбинантные MeKTx11-1 и 3, а также их мутанты MeKTx11-1_G9V и MeKTx11-1_P37S (Рис. 2).

MeKTx11-1 был протестирован широкой на панели ионных каналов, экспрессированных в ооцитах Xenopus laevis, методом двухэлектродной фиксации потенциала (Рис. 3, Табл. 1): Ку (rKv1.1, rKv1.2, hKv1.3, rKv1.4, rKv1.5, rKv1.6, hKv2.1, hKv3.1, rKv4.2 и hKv11.1), потенциал-чувствительных натриевых каналах (Nav: rNav1.1, rNav1.2, rNav1.4, hNav1.5 и BgNav1) и потенциал-чувствительном кальциевом канале Cav3.3. В результате оказалось, что токсин в концентрации 1 мкМ действует только на каналы K_v1.1, 1.2, 1.3 и 1.6, поэтому дальнейшие эксперименты велись на этих изоформах. Полумаксимальные ингибирующие концентрации (ИК₅₀) рекомбинантных токсинов МеКТх11-1 и 3 были идентичны значениям для природных токсинов. В концентрации 200 пМ токсин MeKTx11-1 вызывал ингибирование тока, опосредованного $K_V 1.2$, на 53 ± 2%. Вольт-амперная характеристика каналов в контроле и в присутствии токсина не отличалась. Это говорит о том, что механизм действия МеКТх11-1 состоит в блокировании поры канала, а не воздействии на сенсор потенциала.

110203037MeKTx11-1ZFTDVKCTGTKQCWPVCKKMFGRPNGKCMNGKCRCYPMeKTx11-3ZFTDVKCTVTKQCWPVCKKMFGRPNGKCMNGKCRCYSMeKTx11-1_G9VZFTDVKCTVTKQCWPVCKKMFGRPNGKCMNGKCRCYPMeKTx11-1_P37SZFTDVKCTGTKQCWPVCKKMFGRPNGKCMNGKCRCYSChTxZFTNVSCTTSKECWSVCQRLHNTSRGKCMNKKCRCYS

Рисунок 2. Сравнение аминокислотных последовательностей пептидов MeKTx11-1, MeKTx11-3, MeKTx11-1_G9V, MeKTx11-1_P37S и ChTx. A.o., отличающиеся от MeKTx11-1, показаны на темно-сером фоне. Остатки цистеина показаны на сером фоне. Остаток лизина, блокирующий пору K_V-канала, выделен жирным шрифтом. Z обозначает остаток пироглутаминовой кислоты. Нумерация а.о. приведена над последовательностями.

Таблица 1. Значения ИК₅₀, рассчитанные для токсинов МеКТх11-1 и 3 и их производных по отношению к К_V-каналам.

Почтич	ИК ₅₀ , нМ							
пентид	K _v 1.1	K _v 1.2	Kv1.3	Kv1.6				
MeKTx11-1	2110 ± 150	$0,\!19 \pm 0,\!01$	67 ± 5	8900 ± 900				
MeKTx11-3	130 ± 10	$3,1 \pm 0,2$	78 ± 11	910 ± 110				
MeKTx11-1_G9V	1380 ± 60	$0,\!07 \pm 0,\!01$	$1,4 \pm 0,2$	6900 ± 900				
MeKTx11-1_P37S	740 ± 80	$0,\!09\pm0,\!01$	$13,6 \pm 1,1$	6000 ± 900				

Рисунок 3. Активность MeKTx11-1 и 3 по отношению к ионным каналам. Вверху представлены записи токов через каналы $K_V 1.1-1.6$, Na_V и Ca_V в контроле и после аппликации 1 мкМ токсина (обозначены звездочками). Кривые зависимости блока тока через K_V -каналы от концентрации токсина показаны ниже. Здесь и далее усы показывают стандартную ошибку среднего (n = 5). Анализ проводился при помощи уравнения Хилла.

Модели комплексов токсинов MeKTx11-1 и 3 с каналами K_v1.2 и 1.3 были построены на основе известной структуры комплекса ChTx с химерным каналом K_v1.2/2.1 (PDB ID: 4JTA). Для моделирования MeKTx11-1 и 3 был выбран гомолог с известной

структурой — ChTx (PDB ID: 2CRD). Химерный канал заменяли на $K_V 1.3$, а ChTx — на MeKTx11-1 и 3 при помощи гомологичного моделирования. Затем все комплексы токсинов с каналами были помещены в модель фрагмента мембраны определенного состава, разработанную для имитации мембран нейронов в лаборатории моделирования биомолекулярных систем ИБХ РАН. После этого системы подвергали МД (длина траектории 100 нс). Все эксперименты МД были выполнены с помощью программного обеспечения GROMACS, набора параметров AMBER99SB-ILDN. Моделирование проводили с временным шагом 2 фс, с использованием трехмерных периодических граничных условий, в изотермическом-изобарическом ансамбле с полуизотропным давлением 1 бар и при температуре 37° С.

Анализ траекторий МД показал, что хотя оба токсина в комплексе с каналами имеют сходную ориентацию, они образуют несколько специфических долгоживущих (время жизни более 50% длины траектории) и среднеживущих (10-50% длины траектории) контактов с K_V1.2, которые отсутствуют в случае K_V1.3. А именно, основная цепь P24 и боковая цепь N25 образуют водородные связи с боковой цепью Q353 в K_V1.2. В комплексе с K_V1.3 G380 занимает то же положение, что Q353 в канале K_V1.2, а так как глицин не имеет боковой цепи, то и не может образовывать специфические контакты с а.о. токсина. Помимо этого, можно обнаружить различия в том, как MeKTx11-1 и 3 взаимодействуют с каналом K_V1.2. Боковая цепь K11 пептидов MeKTx11-1 и MeKTx11-1_P37S образует водородную связь с основной цепью остатка Q353 в комплексе с каналом K_V1.2. Эта связь отсутствует в комплексах MeKTx11-3_rK_V1.2 или MeKTx11-1_G9V_rK_V1.2. Это происходит из-за наличия объемной боковой цепи остатка V9, которая загораживает остаток Q353 канала K_V1.2, предотвращая его взаимодействие с K11 пептида (Puc. 4).

МеКТх11-1 и 3 относятся к подсемейству α -КТх1 и являются его первыми представителями с ярко выраженной K_v1.2-селективностью. Эта изоформа канала связана с рядом неврологических заболеваний, поэтому MeKTx11-1 и 3 могут найти применение в рациональном дизайне лекарств. Однако их полезность ограничена нарушениями, связанными с мутациями, которые приводят к увеличению активности каналов. Другим ограничением нашего исследования является то, что мы тестировали активность токсинов только против гомомерных K_v, однако гетеромерные каналы намного чаще экспрессируются *in vivo*, включая каналы, содержащие субъединицу K_v1.2.

Рисунок 4. Модель комплексов rK_v1.2 с MeKTx11-1 (A) и MeKTx11-3 (Б) после 100 нс МД. Токсины показаны в виде ленточной структуры оранжевого цвета; дисульфидные мостики (желтые) и ключевой остаток лизина (K27) показаны в виде стержневой модели. Для наглядности три субъединицы канала на заднем плане показаны как молекулярная поверхность, окрашенная в светло-желтый, светло-зеленый и бежевый цвета. Субъединица, образующая различающиеся взаимодействия с токсинами, показана серебристой ленточной структурой. Остатки K11 токсина и Q353 канала, вовлеченные в специфические межмолекулярные контакты в комплексе MeKTx11-1—rKv1.2, и они же в MeKTx11-3—rKv1.2 показаны в виде стержневой модели (голубого и розового цвета соответственно). Голубые сферы показывают G9 в структуре MeKTx11-1 и V9 в структуре MeKTx11-3. Зеленая пунктирная линия обозначает водородную связь.

Получение селективных лигандов на основе уже известных токсинов

Производные токсина МеКТх13-3

Токсин МеКТх13-3 из яда скорпиона *M. еиреиs* проявляет сходную высокую аффинность к каналам $K_v1.1$ и 1.3 (Табл. 2). Мы решили получить на его основе $K_v1.3$ селективный блокатор. По аминокислотной последовательности МеКТх13-3 идентичен ВтКТХ, выделенному из *Olivierus martensii*, близкого родственника *M. еиреиs*. Поскольку трехмерная структура ВтКТХ известна (PDB ID: 1BKT), мы использовали ее для моделирования комплексов МеКТх13-3 с каналами $K_v1.1-1.3$. Затем модели подвергались МД (Рис. 5). Чтобы выявить различия во взаимодействии МеКТх13-3 с изоформами K_v , мы проанализировали межмолекулярные контакты и вклад отдельных а.о. в энергию образования комплекса во время МД с использованием программного пакета IMPULSE, разработанного в лаборатории моделирования биомолекулярных систем ИБХ РАН. Фармакологическая характеристика и подробный анализ структуры комплексов позволили нам предложить несколько точечных замен в MeKTx13-3 для переключения селективности токсина. Поскольку Q12, K15 и K18 образуют водородные связи, солевые мостики и π -катионные взаимодействия в комплексах с K_v1.1 и 1.2, общая идея модификаций заключалась в том, чтобы уменьшить количество полярных контактов. Более того, поскольку эти а.о. токсина не образуют специфических контактов с K_v1.3, разумно предположить, что такие модификации не окажут существенного влияния на сродство к этой изоформе канала. Поэтому мы предложили производное MeKTx13-3, в котором Q12, K15 и K18 заменены на аланин для снижения сродства токсина к K_v1.1 и 1.2. Кроме того, мы заменили D33 на аргинин для повышения его сродства к K_v за счет образования новых контактов с остатками D377/375/399 в K_v1.1/1.2/1.3 (Рис. 5).

Анализ литературных данных по мутагенезу BmKTX позволил нам предложить другие модификации. Так, замена D33H в последовательности BmKTX приводит к увеличению активности по отношению к каналу $K_V 1.3$. Производное BmKTX, названное ADWX-1, содержит остатки R11 и H33 и блокирует K_V в субнаномолярных концентрациях. Замена этих а.о. (R11A или H33A) приводит к падению активности. Среди других токсинов, которые имеют остатки R11, M28, R30 и H33, также были найдены высокоэффективные блокаторы $K_V 1.3$. Мы решили внести соответствующие четыре замены в структуру MeKTx13-3 (G11R, I28M, G30R и D33H), ожидая получить при этом высокоселективный блокатор $K_V 1.3$.

Пептиды с предложенными заменами, названные MeKTx13-3_AAAR и MeKTx13-3_RMRH, были получены в бактериальной системе экспрессии (Рис. 6). Гены, кодирующие MeKTx13-3 и его производные, были клонированы в экспрессионный вектор pET-32b. В клетках *Escherichia coli* SHuffle T7 Express были наработаны гибридные белки, которые помимо целевых пептидов содержали белок-помощник тиоредоксин (Trx). Искомые пептиды получали при помощи гидролиза гибридных белков легкой цепью энтеропептидазы человека и разделения гидролизата методом обращенно-фазовой высокоэффективной жидкостной хроматографии (ОФ-ВЭЖХ) в градиенте концентрации ацетонитрила. Чистоту выделенных пептидов проверяли при помощи аналитической ОФ-ВЭЖХ. Целевой продукт идентифицировали путем измерения молекулярных масс фракций методом матрично-активированной лазерной десорбции-ионизации (МАЛДИ) массспектрометрии. Выход разных пептидов, полученных нами в работе, составил 2–10 мг с литра питательной среды.

Рисунок 5. (А) Сравнение аминокислотных последовательностей области вестибюля поры каналов $K_v 1.1-1.3$. Нумерация а.о. приведена над каждой последовательностью; отличающиеся а.о. показаны на сером фоне. (Б–Г) Модель комплекса MeKTx13-3 с каналами $K_v 1.1-1.3$. (Б) Общая структура комплекса MeKTx13-3— $K_v 1.3$ после 100 нс МД внутри липидной бислойной мембраны. MeKTx13-3 окрашен розовым; остаток K26 (блокирующий пору канала) показан в виде стержневой модели. (В, Г) Крупный план области вестибюля поры канала в комплексах MeKTx13-3— $K_v 1.1$ (В) и MeKTx13-3— $K_v 1.2$ (Г). Каналы показаны в полупрозрачном представлении. K26 и а.о., участвующие в межмолекулярных контактах, отсутствующих в комплексе MeKTx13-3— $K_v 1.3$, показаны стержневой моделью. Водородные связи и солевые мостики обозначены пунктирными желтыми линиями. Липиды не показаны для наглядности.

Сначала мы сравнили активность природного и рекомбинантного MeKTx13-3 на $K_V 1.1$. Рекомбинантный пептид был менее активен, чем нативный токсин (значения UK_{50} составили 6,7 ± 2,7 и 1,9 ± 0,2 нМ соответственно), что, вероятно, связано с отсутствием у первого С-концевого амидирования. Снижение активности, однако, небольшое, и мы решили использовать рекомбинантный пептид MeKTx13-3 без амидирования в дальнейших исследованиях.

Мы построили кривые доза-ответ для чувствительных каналов (Рис. 7; Табл. 2). МеКТх13-3 АААR продемонстрировал сравнимую с нативным МеКТх13-3 активность в отношении $K_V 1.3$ (И $K_{50} = 8,9 \pm 0,9$ нМ для природного токсина и $9,1 \pm 0,4$ нМ для мутанта), тогда как его сродство к $K_V 1.1$ резко снизилось (И $K_{50} = 541,5 \pm 48,6$ нМ вместо 1.9 ± 0.2 нМ для природного MeKTx13-3). MeKTx13-3 AAAR также показал сниженную активность в отношении $K_V 1.2$ (И $K_{50} = 208, 2 \pm 15, 2$ нМ по сравнению с $105, 9 \pm 14, 6$ нМ для MeKTx13-3) и $K_V 1.6$ (И $K_{50} = 1522,3 \pm 183,4$ нМ вместо $63,4 \pm 4,5$ нМ). МеKTx 13-3_RMRH, вопреки ожиданиям, показал увеличенную аффинность к $K_V 1.1$ и 1.2, $ИK_{50}$ составили 0,11 ± 0,02, $10,7 \pm 0,8, 8,1 \pm 0,2$ и $16,3 \pm 1,0$ нМ для K_V1.1, 1.2, 1.3 и 1.6 соответственно. Можно увидеть смещение кривых вправо для MeKTx13-3_AAAR, а для MeKTx13-3_RMRH наблюдается смещение кривой для K_v1.1 влево, тем самым показывая изменение селективности полученных пептидов. Как мы и предполагали, MeKTx13-3_AAAR из-за внесенных замен сменил свою селективность с K_V1.1 на 1.3. Это произошло благодаря тому, что замены привели к исчезновению нескольких контактов между пептидом и каналами K_V1.1 и 1.2. В случае же MeKTx13-3_RMRH мы ожидали, что он тоже будет селективным к Kv1.3. Для поиска причин, по которым он стал селективным к Ку1.1, мы вновь обратились к молекулярному моделированию.

Структуру пептида мы моделировали также на основе BmKTx. Замена D33H в MeKTx13-3_RMRH нивелирует неблагоприятный энергетический вклад, который был обусловлен отталкиванием двух отрицательно заряженных а.о. в комплексе с $K_V1.1$. Кроме того, H33 образует водородную связь с остатком G376. Таким образом, преимущества замены D33H для стабилизации комплекса MeKTx13-3_RMRH— $K_V1.1$ несомненны. Однако маловероятно, что этот а.о. является ключевым для увеличения специфичности к $K_V1.1$, наблюдаемой у MeKTx13-3_RMRH, поскольку (a) H9 образует две водородные связи с $K_V1.2$, что может вносить вклад в увеличение сродства к этому каналу; (б) замена D33R в MeKTx13-3_AAAR (привносит благоприятный вклад в энергию взаимодействия и обеспечивает множество возможностей для образования полярных контактов) не предотвратила уменьшение сродства к $K_V1.1$, вызванное другими заменами.

Получение МеКТх13-3 Рисунок 6. И его производных. (A) Сравнение аминокислотных последовательностей MeKTx13-3, MeKTx13-3_RMRH и MeKTx13-3 AAAR. Темно-серым цветом обозначены позиции, в которые были введены замены. Остатки цистеина на сером фоне, а линии над последовательностями указывают дисульфидные связи. Нумерация а.о. приведена под последовательностями. (Б-Г) Очистка рекомбинантных MeKTx13-3, MeKTx13-3 AAAR и MeKTx13-3_RMRH с помощью ОФ-ВЭЖХ в градиенте концентрации ацетонитрила (В = 80% CH₃CN, 0,1% трифторуксусной кислоты) на колонке Jupiter C₅ (250×4,6 мм) после расщепления гибридного белка легкой энтеропептидазы человека. Для целевых цепью пептидов указаны измеренные моноизотопные молекулярные массы. (Д) Проверка чистоты выделенного MeKTx13-3_RMRH с помощью ОФ-ВЭЖХ.

Рисунок 7. Кривые зависимости ингибирования тока от концентрации пептида для МеКТх13-3 и его производных в отношении каналов K_v1.1–1.3 и 1.6.

Таблица 2. Значения ИК₅₀, рассчитанные для MeKTx13-3 и его производных MeKTx13-3_AAAR и MeKTx13-3_RMRH по отношению к K_v1.1–1.3 и 1.6.

Понтин		ИК	50, нМ	
пентид	Kv1.1	Kv1.2	Kv1.3	Kv1.6
MeKTx13-3	$1,9 \pm 0,2$	$105,9 \pm 14,6$	$8{,}9\pm0{,}9$	$63,4 \pm 4,5$
MeKTx13-3_AAAR	$541,5 \pm 48,6$	$208,2 \pm 15,2$	$9,1 \pm 0,4$	$1522,3 \pm 183,4$
MeKTx13-3_RMRH	$0,11 \pm 0,02$	$10{,}7\pm0{,}8$	$8,1 \pm 0,2$	$16,3 \pm 1,0$

R11 и R30, имеющиеся у MeKTx13-3_RMRH, вносят значительный благоприятный вклад в энергию взаимодействия с K_v1.1. Более того, эти модификации приводят к образованию двенадцати (четверть от общего числа) межмолекулярных контактов: трех

солевых мостиков (R11–D361, R11–D377, R30–D361), трех водородных связей, а также трех π - π и трех π -катионных взаимодействий (R11–H355, R11–F356, R30–F356) в комплексе с K_v1.1. Стоит отметить, что аналогичные контакты невозможны в комплексах MeKTx13-3 с K_v, поскольку остатки G11 и G30 токсина не имеют боковых цепей. Обобщая результаты вычислительного анализа, можно сделать вывод, что R11 и R30 играют существенную роль в селективном связывании MeKTx13-3_RMRH с K_v1.1. В комплексах с K_v-каналами эти а.о. стабилизируют специфическое положение токсина относительно канального белка за счет большого количества межмолекулярных взаимодействий. Особое расположение токсина обеспечивает формирование дополнительных контактов (остатками H9, Q12, K31, P36, K37) в комплексе с K_v1.1, что, как мы полагаем, лежит в основе высокого сродства к этой изоформе.

Производное ChTx

При анализе литературы была обнаружена работа, в которой обсуждалось взаимодействие токсина ChTx с каналом Drosophila melanogaster Shaker. В канале дикого типа имеется остаток T449, и с ChTx образуется высокоаффинный комплекс ($K_d \approx 0.063$ нМ). Однако, если в канал ввести замену T449F, а в токсин М29I, то образуется намного более слабый комплекс (K_d ≈ 1100 нМ). Из этого наблюдения можно сделать вывод, что взаимодействие изолейцина с большим ароматическим а.о. имеет положительный вклад в свободную комплексообразования. Мы энергию сравнили аминокислотные последовательности канала Shaker и его гомологов у млекопитающих (Рис. 8) и обнаружили, что в Ку-каналах человека в том же положении находятся различные a.o. Поскольку известно, как действует ChTx дикого типа на Kv1-каналы млекопитающих, мы решили проверить, изменится ли аффинность ChTx с заменой M29I и сохранится ли тенденция ухудшения взаимодействия пептида с каналом, у которого в положении, соответствующем T449 в канале Shaker, находится большой ароматический а.о.

Мы получили пептид ChTx_M29I и исследовали его активность. По сравнению с обычным ChTx его аффинность к каналам K_V1.1 и 1.6 упала: в концентрации 2 мкМ блок тока составил $3,1 \pm 2,7\%$ и $9,6 \pm 0,6\%$ соответственно (Табл. 3). Токсин дикого типа является слабо селективным по отношению к каналу K_V1.3, а у его мутанта аффинность к этому каналу упала в ≈ 20 раз. И наоборот, к каналу K_V1.2 он стал в 1500 раз более аффинным ($UK_{50} = 6,0 \pm 0,4$ пМ). Для ChTx_M29I отношение UK_{50} к K_V1.2 и 1.3 составило 680. Таким образом, этот пептид является примером высокоселективного лиганда K_V1.2.

14

Shaker	417	AEAGSENSFFKSIPDAFWWAVVTMTTVGYGDM T PVGV	453
hKv1.1	347	AEAEEAESHFSSIPDAFWWAVVSMTTVGYGDM Y PVTI	383
hKv1.2	349	AEADERESQFPSIPDAFWWAVVSMTTVGYGDM V PTTI	385
hKv1.3	419	AEADDPTSGFSSIPDAFWWAVVTMTTVGYGDM H PVTI	455
hKv1.6	397	AEADDDDSLFPSIPDAFWWAVVTMTTVGYGDM y PMTV	433

Рисунок 8. Сравнение аминокислотных последовательностей области вестибюля поры каналов Shaker и K_v1. Серым фоном показаны различающиеся a.o., полужирным выделены ключевые a.o., предположительно взаимодействующие с остатком M/I29 у ChTx и ChTx_M29I.

Таблица 3. Сравнение аминокислотных последовательностей и фармакологическая характеристика ChTx и ChTx_M29I. Светло-серым выделены остатки цистеина, темносерым обозначена позиция, в которую вносилась замена. Z обозначает остаток пироглутаминовой кислоты. Указаны значения K_d (для ChTx) и ИК₅₀ (для ChTx_M29I) в нМ.

Пептил				Активность, нМ					
пенид		После	довательное	IB		Kv1.1	Kv1.2	Kv1.3	Kv1.6
	1	10	20	30	36				
ChTx	ZFTNV	SCTTSKECWS	VCQRLHNTSR	GKC M NKKC	RCYS	1500	9	0,19	22
ChTx_M29I	ZFTNVSCTTSKECWSVCQRLHNTSRGKC I NKKCRCYS				2000/2 11	$0,0060 \pm$	$4,1 \pm$	2000/0 6	
						2000/3,11	0,0004	0,8	2000/9,6

¹"А/Б" означает, что в концентрации А нМ пептид блокирует ток через канал на Б процентов. Нумерация а.о. приведена над последовательностями.

Таким образом, нами при помощи мутагенеза были получены селективные лиганды трех каналов: $K_V 1.1-1.3$. В случае MeKTx13-3_AAAR замены были предложены на основе анализа моделей комплексов MeKTx13-3 с K_V -каналами и были направлены на снижение аффинности к нецелевым изоформам. В случае MeKTx13-3_RMRH и ChTx_M29I мы опирались на опубликованные результаты мутагенеза, в результате чего у MeKTx13-3_RMRH селективность сместилась еще больше в сторону $K_V 1.1$, а у ChTx_M29I — в сторону $K_V 1.2$. Эти три изоформы являются перспективными мишенями для разработки лекарств, поскольку они связаны с неврологическими и аутоиммунными заболеваниями.

Селективные лиганды на основе инертного каркаса

Tk-hefu-10

Ранее в нашей лаборатории проводились эксперименты по превращению неактивного на калиевых каналах α-гарпинина Tk-AMP-X2 из пшеницы Triticum kiharae, состоящего из 28 а.о. и содержащего два S-S-мостика (C¹–C⁴, C²–C³), в активный блокатор. В результате были получены искусственные пептиды Tk-hefu-1 и 2 (Табл. 4), которые проявляли слабую активность к каналу K_V1.3. В данной работе были предприняты попытки более аффинное производное при помощи методов компьютерного получить моделирования. На первом этапе на основе известной структуры Tk-hefu-1 (PDB ID: 5LM0) была создана модель Tk-hefu-2, которая затем использовалась для получения модели комплекса Tk-hefu-2—Ky1.3. Она была построена на основе комплекса ChTx с химерным каналом K_v1.2/2.1, как описано выше, но в этом случае ChTx заменялся на Tk-hefu-2 так, чтобы ключевые остатки Y6 и K22 у Tk-hefu-2 накладывались на Y36 и K27 у ChTx. При анализе модели мы предложили 11 аналогов Tk-hefu-2 с потенциально более высоким сродством к Kv1.3 (Tk-hefu-5, 6 и Tk-hefu-2_v1–v9; Табл. 4). Стратегия заключалась в том, чтобы ввести замены в Tk-hefu-2 так, чтобы на предполагаемой контактной поверхности с каналом было больше положительно заряженных или меньше отрицательно заряженных a.o.

Были получены рекомбинантные Tk-hefu-5 и 6, активность которых оценивалась против Kv1.3. Значения UK_{50} составили 2,7 ± 0,3 и 0,7 ± 0,1 мкМ соответственно, тогда как UK_{50} для «родительского» пептида Tk-hefu-2 составляла 2,3 ± 0,4 мкМ (Табл. 4). На основании этих результатов Tk-hefu-6 был выбран в качестве отправной точки для дальнейшего повышения аффинности к Kv1.3. Теперь стратегия была модифицирована так, чтобы: 1) увеличить количество положительно заряженных а.о. на определенных участках, взаимодействующих с каналом, и/или уменьшить количество отрицательно заряженных а.о.; 2) локально «разгрузить» удаленные от канала части пептида от избыточных положительных зарядов; 3) увеличить количество водородных связей без изменения заряда (а именно за счет замен K на R). Мы предложили 11 новых пептидов (Tk-hefu-6_v1–v11) и смоделировали влияние соответствующих замен.

Многие из предложенных модификаций позволили сформировать дополнительные специфические межмолекулярные контакты по сравнению с комплексом Tk-hefu-6—Kv1.3. Замены К на R приводили к образованию дополнительных солевых мостиков (до двух) и водородных связей (до трех). Замена Y6K дала множественные солевые мостики,

водородные связи и π -катионные взаимодействия. D2N и D2Q также привели к увеличению количества водородных связей (до трех). При замене Q10K появлялись дополнительные солевой мостик и π -катионное взаимодействие, а при K18Y тирозин образовывал дополнительный стэкинг-контакт, тогда как R4Q, R7Q, R11Q, D14Q и E17Q существенно не влияли на общее количество межмолекулярных контактов.

Анализ замен в структуре Tk-hefu-6 выявил те, которые, вероятно, приведут к усилению связывания с каналом Kv1.3. Мы выбрали несколько таких замен и получили рекомбинантные пептиды, названные Tk-hefu-7–10 (Табл. 4). Эти пептиды мы тестировали в концентрации 0,7 мкМ на Kv1.3 для сравнения с «родительским» Tk-hefu-6 (его $UK_{50} \approx 0,7$ мкМ). Tk-hefu-7–10 блокировали Kv1.3-опосредованные токи на $\approx 39, 59, 62$ и 69% соответственно. Для проверки селективности Tk-hefu-10, наиболее аффинного производного, его активность измеряли на каналах Kv1.1, 1.2 и 1.6. При концентрации пептида 5 мкМ соответствующие токи блокировались на 54, 50 и 30% (Рис. 9, Табл. 4). UK_{50} в отношении Kv1.3 составила 152,7 \pm 34,2 нМ, что соответствует 4,6 и 15,1-кратному увеличению аффинности по сравнению с Tk-hefu-6 и 2. Tk-hefu-10 сохраняет высокую селективность Tk-hefu-2; значение UK_{50} для Kv1.3 в 33 раза ниже, чем для ближайшего по аффинности канала Kv1.2.

Рисунок 9. Активность производных Tk-hefu-2 на K_V-каналах. (А) Кривые зависимости ингибирования тока через каналы K_V1.3 от концентрации пептидов для Tk-hefu-2, 6 и 10. (Б) Активность Tk-hefu-10 на каналах K_V1.2, 1.3 и 1.6, экспрессированных в ооцитах лягушки *X. laevis*. Показаны записи токов через соответствующие каналы в контроле и после добавления пептида (отмечены звездочкой) в указанных концентрациях.

Чтобы проверить, какие именно замены в Tk-hefu-10 привели к увеличению сродства, мы смоделировали его в комплексе с $K_V 1.3$ и подвергли МД (Рис. 10). Как и ожидалось, остаток Q2 образует дополнительную водородную связь с остатком H451. К3 формирует те же контакты, что в комплексе Tk-hefu-6— $K_V 1.3$, и дополнительно образует π -катионное взаимодействие с H451. Замена Y6K привела к дополнительному солевому мостику и π -катионному взаимодействию, но вызвала потерю одного стэкинг-контакта. Замены K18R и K19R привели к двум дополнительным стэкинг-взаимодействиям.

Рисунок 10. Модель комплекса Tk-hefu-10— $K_V 1.3$. (A) Сравнение положения Tk-hefu-10 (окрашен оранжевым) в устье поры канала после 100 нс МД с положением Tk-hefu-6 (показан полупрозрачным розовым). $K_V 1.3$ представлен в виде серой ленточной структуры. Остатки Y/K6, K22 и K3 показаны стержневой моделью. (Б) Вид сбоку на Tk-hefu-10. А.о. канала $K_V 1.3$ D433, D449 и H451 отображены голубой стержневой моделью, D449 соседней субъединицы показан бледно-зеленым. Остатки Q2, K3, K6 и K22 пептида Tk-hefu-10 также представлены стержневой моделью. Желтыми пунктирными линиями указаны межмолекулярные контакты.

Tk-hefu-11

Среди полученных пептидов самым аффинным в отношении K_V -каналов оказался Tk-hefu-10. Замены в Tk-hefu-7–10 вводились поочередно, и можно отметить, что при переходе от Tk-hefu-6 к 7 произошло падение аффинности, а при переходе от Tk-hefu-8 к 9 увеличения аффинности почти не наблюдается (Табл. 4). В связи с этим мы решили сохранить лишь те а.о., которые приводили к значительному увеличению аффинности по отношению к каналу K_V 1.3. Таким образом на основе предыдущих экспериментов был предложен новый пептид, названный Tk-hefu-11.

Этот пептид мы тестировали на тех же каналах, на которых был активен Tk-hefu-10. В концентрациях 2 мкМ и выше наблюдался лизис ооцитов, поэтому были рассчитаны значения полумаксимальной эффективной концентрации (ЭК₅₀), которые для K_v1.3 и 1.6 составили 70,4 \pm 2,9 нМ и 10,0 \pm 0,5 нМ соответственно, в то время как 1 мкМ Tk-hefu-11 ингибировал K_v1.1 на 41,2 \pm 2,9% и K_v1.2 на 50,1 \pm 0,8%. Эти данные указывают на более сильное ингибирование канала K_v1.6 по сравнению с другими протестированными изоформами K_v-каналов, что делает Tk-hefu-11 уникальным пептидом, обладающим способностью ингибировать K_v1.6 в наномолярном диапазоне концентраций и коэффициентом селективности >8 (Табл. 4).

Пространственная структура Tk-hefu-11 в водном растворе была изучена методами спектроскопии В.А. Лушпой ядерного магнитного резонанса (лаборатория биомолекулярной ЯМР-спектроскопии ИБХ РАН; PDB ID: 7QXJ). Для этого мы получили ¹⁵N-меченый образец пептида. На основе изученной структуры мы построили гомологичную модель Tk-hefu-10. Чтобы выявить молекулярные детерминанты, которые служат причиной различий в активности Tk-hefu-10 и 11 на Kv-каналах, мы провели компьютерное исследование молекулярных комплексов этих пептидов с Kv1.3 и 1.6: рассчитали траектории МД, провели вычислительный анализ контактных поверхностей и энергетического вклада а.о. в комплексообразование. Анализ межмолекулярных контактов при МД показывает, что замены, введенные в Tk-hefu-11, совместно влияют на связывание с каналами. С одной стороны, при переходе от Tk-hefu-10 к 11 замена Q2D приводит к потере взаимодействия с Kv1.3 за счет электростатического отталкивания от боковых цепей D433 и D449 (Рис. 11). Однако ни Q2, ни D2 в Tk-hefu-10 или 11 не образуют специфических контактов с Ку1.6.

С другой стороны, остаток K6 у Tk-hefu-10 участвует в солевом мостике, трех водородных связях и двух π -катионных контактах в комплексе с Kv1.3, тогда как остаток Y6 у Tk-hefu-11 образует только одну водородную связь и одно стэкинг-взаимодействие с каналом. В комплексе с Kv1.6 тот же остаток K6 в структуре Tk-hefu-10 участвует в двух водородных связях и двух π -катионных контактах, а Y6 в Tk-hefu-11 образует только одну водородную связь. Замена Q7R еще сильнее влияет на распределение контактов в комплексах. Согласно нашему анализу, вместе с N-концом и R11, R7 обеспечивает высокую стабильность комплекса Tk-hefu-11 с Kv1.6 и 1.3.

Таблица 4. Аминокислотные последовательности и активность производных Tk-hefu против K_V-каналов. Жирным выделены вносимые замены в последовательность Tk-AMP-X2.

Название			Активность, нМ				
	Аминокислотная последовательность	K _V 1.1	Kv1.2	Kv1.3	Kv1.6		
	1 10 20 28						
Tk-AMP-X2	ADDRCERMCQRYHDRREKKQCMKGCRYG	_1	-	-	-		
Tk-hefu-1	ADDRC Y RMCQRYHDRREKKQC KE GCRYG	-	40000/8,32	34000 ± 2800^3	40000/7,3		
Tk-hefu-2	ADDRC Y RMCQRYHDRREKKQC K KGCRYG	-	40000/11,7	2300 ± 400	40000/17,4		
Tk-hefu-2_v1	AD K RC Y RMCQRYH K RREKKQC K KGCRYG	4					
Tk-hefu-2_v2	A K DRC Y RMCQRYH K RREKKQC K KGCRYG						
Tk-hefu-2_v3	A KK RC Y RMCQRYH K RREKKQC K KGCRYG						
Tk-hefu-2_v4	A KK RC Y RMCQRYHDRREKKQC K KGCRYG						
Tk-hefu-2_v5	ADDRC Y RMCQRYH K RREKKQC K KGCRYG						
Tk-hefu-2_v6	ADDRC Y RMCQRYH R RREKKQC K KGCRYG						
Tk-hefu-2_v7	ADDRC Y RMCQRYH H RREKKQC K KGCRYG						
Tk-hefu-2_v8	ADDRC Y RMCQRYH Q RREKKQC K KGCRYG						
Tk-hefu-2_v9	ADDRC Y RMCQRYH W RREKKQC K KGCRYG						
Tk-hefu-5	A K DRC Y RMCQRYHDRREKKQC K KGCRYG	-	$10000/12 \pm 3$	2700 ± 300	-		
Tk-hefu-6	AD K RC Y RMCQRYHDRREKKQC K KGCRYG	$5000/75 \pm 5$	$5000/69 \pm 1$	700 ± 100	$5000/58 \pm 3$		
Tk-hefu-6 v1	AD K RC Y RMCQRYHDRR Q KKQC K KGCRYG						
Tk-hefu-6_v2	AD R RC Y RMCQRYHDRREKKQC KR GCRYG						
Tk-hefu-6_v3	AD K RC Y RMC K RYHDRRE Y KQC K KGCRYG						
Tk-hefu-6_v4	AD K RC KQ MCQRYHDRREKKQC K KGCRYG						
Tk-hefu-6_v5	A QK RC Y RMCQRYH Q RR Q KKQC K KGCRYG						
Tk-hefu-6 v6	A QKQ C YQ MCQ Q YH Q RR Q KKQC K KGCRYG						
Tk-hefu-6_v7	SNRQ C Y RMCQRYHDRREKKQC K KGCRYG						
Tk-hefu-6_v8	SNRQ C KQ MCQ Q YH Q RR Q KKQC K KGCRYG						
Tk-hefu-6_v9	A QKQ C KQ MCQ Q YH Q RR Q KKQC K KGCRYG						
Tk-hefu-6_v10	AD K RC Y RMCQRYHDRRE RR QC K KGCRYG						
Tk-hefu-6_v11	SNKQ C Y RMCQRYHDRREKKQC K KGCRYG						
Tk-hefu-7	A QK RC Y RMCQRYHDRREKKQC K KGCRYG	$5000/62 \pm 4$	$5000/48 \pm 2$	700/39	$5000/68 \pm 2$		
Tk-hefu-8	A QK RC Y RMCQRYHDRRE RR QC K KGCRYG	$5000/72 \pm 1$	5000/40	700/59	$5000/50 \pm 2$		
Tk-hefu-9	A QK RC KQ MCQRYHDRRE RR QC K KGCRYG	$5000/79 \pm 2$	5000/24	700/62	$5000/51 \pm 1$		
Tk-hefu-10	A QK RC KQ MCQRYH Q RR QRR QC K KGCRYG	$5000/54 \pm 5$	5000 ± 2000	$152,7 \pm 34,2$	5000/30		
Tk-hefu-11	AD K RC Y RMCQRYH Q RR QRR QC K KGCRYG	$1000/41.2 \pm 2.9$	$1000/50.1 \pm 0.8$	70.4 ± 2.9^{5}	10.0 ± 0.5^{5}		

¹ Нет активности при 20 мкМ; ² "А/Б" означает, что в концентрации А нМ наблюдался блок на Б процентов; ³ А ± Б — значения ИК₅₀ в нМ; ⁴ Пустые ячейки указывают на отсутствие данных; ⁵ Значения ЭК₅₀ в нМ. Нумерация а.о. приведена над последовательностями.

Рисунок 11. Комплексы Tk-hefu-10 и 11 с каналами $K_V 1.3$ и 1.6. (A) Tk-hefu-11 в комплексе с $K_V 1.6$. (Б) Tk-hefu-11 с $K_V 1.3$. (В) Tk-hefu-10 с $K_V 1.6$. (Г) Tk-hefu-10 с $K_V 1.3$. Желтыми пунктирными линиями указаны образуемые контакты.

Нам удалось получить селективные лиганды каналов $K_v 1.3$ и 1.6 на основе неактивного пептида при помощи компьютерного моделирования и мутагенеза. Мы предполагаем, что наш подход белковой инженерии можно использовать в случае других ионных каналов. Примечательно, что для $K_v 1.6$ известно немного специфичных лигандов со сравнительно низкой аффинностью; созданный нами Tk-hefu-11 обладает и высокой аффинностью, и селективностью в отношении этой изоформы. Мы надеемся, что Tk-hefu-11 будет использован как молекулярный инструмент для изучения функций $K_v 1.6$.

21

Заключение

С использованием методов молекулярного моделирования в структуре пептидных поровых блокаторов К_V-каналов были предсказаны аминокислотные замены для увеличения селективности в отношении выбранных изоформ: К_V1.1–1.3 и 1.6. На основе пептидов, как проявляющих активность в отношении К_V-каналов, так и являющихся неактивными, были получены высокоаффинные и селективные лиганды указанных каналов. Детальный анализ молекулярных моделей и результатов электрофизиологических измерений позволил определить детерминанты селективности изученных поровых блокаторов К_V-каналов.

Эффект двух различающихся а.о. MeKTx11-1 и 3, проявляющих разный уровень селективности в отношении $K_V1.2$, опосредованный: они влияют на взаимодействие с каналом соседних а.о. В структуру MeKTx13-3_AAAR были введены такие аминокислотные замены, что пептид стал образовывать меньше контактов с нецелевыми каналами. Это привело к падению его аффинности к каналам $K_V1.1$ и 1.2, в то время как аффинность к целевой изоформе $K_V1.3$ не изменилась. Замены в MeKTx13-3_RMRH были предложены на основании анализа литературы. Вопреки нашим ожиданиям, полученный пептид оказался $K_V1.1$ -селективным. Молекулярное моделирование позволило объяснить этот эффект — он связан с изменением расположения пептида в поре канала по сравнению с исходным MeKTx13-3. Повышение селективности ChTx_M29I к каналу $K_V1.2$, по всей видимости, объясняется взаимодействием замененного а.о. с вариабельным а.о. во внешнем вестибюле поры K_V1 -каналов.

При помощи нескольких раундов молекулярного моделирования нам удалось получить селективный по отношению к изоформе $K_V 1.3$ пептид Tk-hefu-10, созданный на основе неактивного соединения. А дальнейшее внесение замен позволило получить уникальный пептид, селективный к каналу $K_V 1.6$. Столь резкое изменение селективности объясняется тем, что внесенные замены изменяют конформацию молекулы, и в итоге она принимает иное положение в вестибюле поры канала и образует множество новых выгодных контактов.

Выводы

1. Построены молекулярные модели комплексов потенциал-чувствительных калиевых каналов K_v1.1–1.3 и 1.6 с их природными и искусственными пептидными поровыми блокаторами. Анализ моделей позволил предложить модификации в структуру блокаторов для увеличения их селективности.

2. В бактериальной системе экспрессии получено 15 рекомбинантных пептидов с предложенными модификациями с выходом 2–10 мг с литра питательной среды, что позволило изучить влияние внесенных аминокислотных замен на активность.

3. Охарактеризовано действие полученных пептидов на потенциал-чувствительные калиевые каналы, экспрессированные в ооцитах лягушки *Xenopus laevis*, методом двухэлектродной фиксации потенциала.

4. С использованием двух различных подходов: мутагенеза известных токсинов и белковой инженерии неактивного пептида — получены селективные поровые блокаторы четырех изоформ каналов. MeKTx13-3_RMRH избирательно блокирует Kv1.1, ChTx_M29I — Kv1.2, MeKTx13-3_AAAR и Tk-hefu-10 — Kv1.3, Tk-hefu-11 — Kv1.6.

5. Анализ детерминант селективности полученных лигандов калиевых каналов показал, что в большинстве случаев увеличенная аффинность к определенной изоформе есть результат образования множественных межмолекулярных контактов. В случае Tk-hefu-11 новые контакты образовались за счет изменения его конформации из-за внесенных замен.

Список публикаций по теме диссертации

1. Kuzmenkov A.I., Nekrasova O.V., Peigneur S., Tabakmakher V.M., **Gigolaev A.M.**, Fradkov A.F., Kudryashova K.S., Chugunov A.O., Efremov R.G., Tytgat J., Feofanov A.V., Vassilevski A.A., 2018. Kv1.2 channel-specific blocker from *Mesobuthus eupeus* scorpion venom: Structural basis of selectivity // *Neuropharmacology*. V. 143. P. 228–238.

2. **Gigolaev A.M.**, Kuzmenkov A.I., Peigneur S., Tabakmakher V.M., Pinheiro-Junior E.L., Chugunov A.O., Efremov R.G., Tytgat J., Vassilevski A.A., 2020. Tuning scorpion toxin selectivity: Switching from $K_V 1.1$ to $K_V 1.3$ // *Front. Pharmacol.* V. 11: 1010.

3. Tabakmakher V.M., **Gigolaev A.M.**, Peigneur S., Krylov N.A., Tytgat J., Chugunov A.O., Vassilevski A.A., Efremov R.G., 2021. Potassium channel blocker crafted by α -hairpinin scaffold engineering // *Biophys. J.* V. 120. P. 2471–2481.

4. Табакмахер В.М., Кузьменков А.И., Гиголаев А.М., Пиньейро-Жуниор Э.Л., Пеньёр С., Ефремов Р.Г., Титгат Я., Василевский А.А., 2021. Искусственный пептидный лиганд калиевого канала K_v1.1 с высокой селективностью // Российский физиологический журнал им. И.М. Сеченова. V. 107. Р. 584–604.

5. **Gigolaev A.M.**, Lushpa V.A., Pinheiro-Junior E.L., Tabakmakher V.M., Peigneur S., Ignatova A.A., Feofanov A. V., Efremov R.G., Mineev K.S., Tytgat J., Vassilevski A.A., 2022. Artificial pore blocker acts specifically on voltage-gated potassium channel isoform $K_V 1.6 // J$. *Biol. Chem.* V. 298: 102467.

6. **Гиголаев А.М.**, Пиньейро-Жуниор Э.Л., Пеньёр С., Титгат Я., Василевский А.А., 2022. Высокоаффинный K_v1.2-селективный пептид // Российский физиологический журнал им. И.М. Сеченова. V. 108. Р. 1627–1638.

Тезисы конференций

• Искусственный пептид, селективно блокирующий калиевые каналы K_v1.3 // **А.М. Гиголаев**, С. Пеньёр, В.М. Табакмахер, А.О. Чугунов, Я. Титгат, Р.Г. Ефремов, А.А. Василевский // XXXI Зимняя молодежная научная школа «Перспективные направления физико-химической биологии и биотехнологии», Москва, 2019.

• Создание селективного блокатора калиевого канала Kv1.3 // А.М. Гиголаев, А.О. Чугунов, В.М Табакмахер, А.А. Василевский // Конференция «Ломоносов 2021», Секция «Биохимия», Москва, 2021.

• Направленный мутагенез токсина скорпиона, блокирующего калиевые каналы // А.М. Гиголаев, В.М. Табакмахер, А.И. Кузьменков, Э.Л. Пиньейро-Жуниор, С. Пеньёр, А.О. Чугунов, Р.Г. Ефремов, Я. Титгат, А.А. Василевский // Х российский симпозиум «Белки и пептиды», Сочи – Дагомыс, 2021.

• Новый высокоаффинный пептидный лиганд калиевого канала K_v1.6 // **А.М. Гиголаев**, В.М. Табакмахер, Э.Л. Пиньейро-Жуниор, В.А. Лушпа, С. Пеньёр, К.С. Минеев, Р.Г. Ефремов, Я. Титгат, А.А. Василевский // XXXIV Зимняя молодежная научная школа «Перспективные направления физико-химической биологии и биотехнологии», Москва, 2022.