Министерство науки и высшего образования Российской Федерации (МИНОБРНАУКИ РОССИИ) ИНСТИТУТ БИООРГАНИЧЕСКОЙ ХИМИИ им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук (ИБХ РАН)

На правах рукописи

Григоров Артем Сергеевич

Роль малых регуляторных РНК микобактерий в адаптации к стрессам

Специальность – 1.5.3 – Молекулярная биология

Диссертация на соискание ученой степени кандидата биологических наук

> Научный руководитель: доктор биологических наук Ажикина Татьяна Леодоровна

Москва, 2023 г.

Оглавление

Список сокращений и условных обозначений	6
Введение	7
Актуальность темы исследования	7
Степень разработанности темы исследования	8
Цели и задачи	9
Научная новизна	9
Теоретическая и практическая значимость работы	10
Методология и методы исследования	11
Положения, выносимые на защиту	11
Степень достоверности результатов	12
Апробация результатов исследования	12
Структура и объем диссертации	12
Глава 1. Обзор литературы	13
1.1 Введение	13
1.2 Подходы, использующиеся для поиска и характеризации бактериальных нк	РНК13
1.3 Механизмы действия бактериальных нкРНК	17
1.3.1 Механизмы действия бактериальных транс-кодируемых нкРНК	18
1.3.2 Участие шаперонных белков в механизмах действия бактериальных нкРНК	30
1.4 Ландшафт малых некодирующих РНК микобактерий	32
1.4.1 Хронология аннотации некодирующего транскриптома микобактерий	32
1.4.2 Примеры микобактериальных малых РНК	37
1.5 Заключение	41
Глава 2. Материалы и методы	42
2.1 Используемые бактериальные штаммы, культивирование и условия роста	42
2.2 Оценка оптической плотности бактериальной культуры	43
2.3 Выделение нуклеиновых кислот	43
2.4 Электрофоретическое разделение нуклеиновых кислот в геле	45
2.5 Рестрикция и модификация нуклеиновых кислот	45
2.6 Полимеразная цепная реакция (ПЦР)	46
2.7 Синтез кДНК и ОТ-ПЦР в реальном времени (количественная ПЦР)	47
2.8 Получение компетентных клеток и трансформация	47
2.9 Создание штамма <i>M. smegmatis</i> с делецией гена нкРНК F6 (ΔF6)	48
2.10 Создание комплементированного (ΔF6::F6) и контрольного (ΔF6::р таммов <i>M. smegmatis</i> с делецией гена нкРНК F6	MV306) 49
2.11 Создание штаммов <i>M. smegmatis</i> для проверки взаимодействия нкРНК F6 и PHK <i>MSMEG</i> 4640	1 5'-HTO 50

2.12 Создание гиперэкспрессирующих нкРНК MTS1338 и контрольных штаммов smegmatis (msm_pMV261_1338, msm_pMV261_E) и <i>M. tuberculosis</i> (mtb_pMV261_13 mtb_pMV261_E)	<i>M</i> . 38, 51
2.13 Создание транскрибирующего нкРНК MTS1338 и контрольного штаммов smegmatis, экспрессирующих GFP (msm_GFP_pMV261_1338, msm_GFP_pMV261_E)	М. 52
2.14 Стрессовые воздействия <i>in vitro</i>	52
2.15 Получение некультивируемых форм микобактерий	53
2.16 Реактивация некультивируемых форм микобактерий	54
2.17 Инфекция	54
2.18 Оценка выживаемости микобактерий	56
2.19 Измерение уровня включения радиоактивно меченного урацила	56
2.20 Нозерн-блоттинг	57
2.21 Вестерн-блоттинг	57
2.22 Конфокальная микроскопия	58
2.23 Количественная оценка флуоресценции GFP	59
2.24 Измерение концентрации белков по методу Бредфорда	59
2.25 Определение уровня цитокинов	50
2.26 Пробоподготовка библиотек для массового параллельного секвенирования секвенирование	аи 60
2.27 Анализ данных массового параллельного секвенирования	51
2.28 Депонирование данных массового параллельного секвенирования	52
2.29 Аннотация некодирующих РНК <i>M. smegmatis</i>	52
2.30 Пробоподготовка и исследование протеома	52
2.31 Предсказание мишеней бактериальных нкРНК	53
2.32 Статистический анализ	54
2.33 Визуализация	54
Глава 3. Результаты и обсуждение	55
3.1 Полнотранскриптомное исследование <i>M. smegmatis</i> в условиях холодового стре	cca 65
3.1.1 Акклимационная фаза <i>M. smegmatis</i> длится до 24 часов	55
3.1.2 Транскриптомный адаптация <i>M. smegmatis</i> к условиям низких температур протекает две стадии	гв 66
3.1.3 Адаптация <i>M. smegmatis</i> к низким температурам приводит к глобальным	
транскриптомным измененениям	70
3.1.4. Аннотация некодирующего транскриптома M. smegmatis	72
3.1.5 Цис-кодируемые нкРНК	72
3.1.6 Транс-кодируемые нкРНК	75
3.2 Роль малой РНК F6 в переходе <i>M. smegmatis</i> в состояние покоя	79
3.2.1 Влияние гена нкРНК <i>M. smegmatis</i> F6 на фенотип бактерии в нормальных условиях?	79
3.2.2 Делеция F6 вызывает изменения в экспрессии ряда генов M. smegmatis	83

3.2.3 мРНК MSMEG_4640 является прямой молекулярной мишенью малой РНК F6	. 85
3.2.4 Делеция гена нкРНК F6 ингибирует переход M. smegmatis в состояние покоя	. 89
3.3 Роль малой РНК MTS1338 в адаптации <i>M. tuberculosis</i> к персистированию вн	утри
макрофагов	. 95
3.3.1 MTS1338 накапливается в покоящихся бактериях, но не участвует в процессе реактивации	. 95
3.3.2 Пик транскрипции нкРНК MTS1338 в мышиной модели инфекции наблюдается по 10-й недели	эсле 96
3.3.3 Главным индуктором транскрипции MTS1338 ex vivo является NO	. 97
3.3.4 Гиперэкспрессия малой РНК MTS1338 способствует выживанию <i>M. tuberculosis</i> пр действии стрессоров <i>in vitro</i>	ри 100
3.3.5 Гиперэкспрессия MTS1338 в <i>М. tuberculosis</i> модулирует экспрессию стресс- специфических генов	102
3.3.6 Гетерологичная транскрипция малой РНК <i>M. tuberculosis</i> MTS1338 в <i>M. smegmatis</i> приводит к ингибированию роста	105
3.3.7 Гетерологичная транскрипция малой РНК <i>M. tuberculosis</i> MTS1338 стимулирует выживание <i>M. smegmatis</i> при заражении <i>ex vivo</i>	106
3.3.8 Гетерологичная транскрипция MTS1338 в <i>M. smegmatis</i> ингибирует нормальное созревание фаголизосом	107
3.3.9 Малая РНК MTS1338 модулирует экспрессию цитокинов в инфицированных макрофагах	109
3.3.10 MTS1338 влияет на экспрессию транскрипционных факторов <i>M. smegmatis</i> и бели вовлеченных в ремоделинг клеточной стенки	ков, .111
3.3.11 MTS1338 стимулирует секрецию белков, вовлеченных в механизмы вирулентност клеточной проницаемости	ги и .111
Заключение	114
Выводы	116
Список литературы	117
Приложения	131
Приложение А	131
Список использованных в исследовании олигонуклеотидов	131
Приложение Б	133
Схема создания конструкции для делеции гена нкРНК F6 <i>M. smegmatis</i>	133
Приложение В	134
Схема создания конструкции для комплементации штамма ΔF6 <i>M. smegmatis</i>	134
Приложение Г	135
Схема создания репортерной системы для проверки взаимодействия нкРНК F6 и 5'-НТС мРНК <i>MSMEG</i> 4640	О 135
Приложение Д	136
Схема создания конструкции для транскрипции MTS1338	136
Приложение Е	137

Схема создания конструкции для одновременной транскрипции MTS1338 и экспресси	и GFP 137
Приложение Ж	137
Подтверждение выявленных дифференциально экспрессированных генов <i>M. smegmat</i> условиях холодового стресса	<i>is</i> в 138
Приложение И	139
Список идентифицированных некодирующих РНК <i>M. smegmatis</i>	139
Приложение К	141
Вторичные структуры выявленных транс-кодируемых нкРНК	141
Приложение Л	143
Предсказанные мРНК мишени выявленных транс-кодируемых нкРНК	143
Приложение М	146
Список генов, дифференциально экспрессированных в штамме <i>M. smegmatis</i> Δ F6	146
Приложение Н	147
Оценка транскрипции F6 в мутантном (ΔF6) и комплементированном (ΔF6:F6) штамм smegmatis	iax <i>M</i> . 147
Приложение П	148
Список предсказанных мРНК мишеней для малой РНК F6 M. smegmatis	148
Приложение Р	149
Транскрипция гена MSMEG_4640 в модели покоя M. smegmatis	149
Приложение С	150
Дифференциально экспрессированные гены в <i>М. tuberculosis</i> при гиперэкспрессии MTS1338	150
Приложение Т	155
Подтверждение транскрипции MTS1338 в <i>M. smegmatis</i>	155
Приложение У	156
Различия в протеомах штамма <i>M. smegmatis</i> с гетерологичной транскрипцией MTS13. штамма с контрольным вектором	38 и 156
Приложение Ф	160
Различия в секретомах штамма <i>M. smegmatis</i> с гетерологичной транскрипцией MTS13 штамма с контрольным вектором	38 и 160
Приложение Х	162
Подтверждение результатов протеомного профилирования <i>M. smegmatis</i> на транскриптомном уровне	162

Список сокращений и условных обозначений

- 5'-НТО 5'-нетранслируемая область
- кДНК комплементарная ДНК
- КОЕ колониеобразующие единицы
- МИ множественность инфекции
- НВЧ наиболее вероятное число
- ОП₆₀₀ оптическая плотность культуры при длине световой волны 600 нм
- ОТ-ПЦР полимеразная цепная реакция с обратной транскрипцией
- ПЦР полимеразная цепная реакция
- п.н. пар нуклеотидов
- FDR ожидаемая доля ложных отклонений (False discovery rate)
- IFN-*γ* интерферон гамма (Interferon gamma)
- IL интерлейкин (Interleukin)
- L-NIL N6-(1-иминоэтил)-L-лизина гидрохлорид
- Log₂FC логарифм отношения с основанием 2, или Log₂ Fold Change; мера, которая используется для определения степени изменения экспрессии гена между двумя условиями
- MTB Mycobacterium tuberculosis
- Мф макрофаги
- RNA-seq PHK-секвенирование (RNA sequencing)
- P_{adj} скорректированное р-значение (p adjusted)
- RPKM нормализованные значения прочтений на 1 миллион прочтений (Read Per Kilobase per Million mapped reads)
- TPM нормализованные значения транскриптов на 1 миллион прочтений (Transcripts per million)
- WT дикий тип (Wild type)

Введение

Актуальность темы исследования

Микобактерии — это разнообразный род бактерий, разделяемый на свободноживущие (непатогенные) и патогенные виды; каждая из групп имеет свои экологические ниши и испытывает свое эволюционное давление. Свободноживущие виды микобактерий, которые часто могут быть найдены в почве и воде, играют жизненно важную роль в экосистемах, участвуя в круговороте питательных веществ и взаимодействуя с другими микробными сообществами. Они также представляют биотехнологический интерес из-за их потенциала в области биоремедиации и производства биологически активных соединений. Патогенные микобактерии, наиболее известный представитель которых, *Mycobacterium tuberculosis*, является возбудителем туберкулеза, развили сложные механизмы заражения и персистенции в организмах-хозяевах. Способность уклоняться от иммунного ответа хозяина в сочетании с уникальной клеточной стенкой делает их опасными микроорганизмами, а микобактериальные инфекции - сложными для лечения заболеваниями.

И патогенные, и непатогенные виды бактерий встречают в своих жизненных циклах большое число биотических и абиотических стресс-факторов, которые играют ключевую роль выживании, распространении И формировании эволюционных траекторий R микроорганизмов. Биотические стрессы представляют собой факторы, связанные с живыми компонентами окружающей среды; среди них можно отметить иммунные реакции организмахозяина в контексте патогенеза, бактериофаги или любые другие организмы, которые способны оказывать давление на бактериальные популяции или конкурировать с ними. Абиотические стрессы включают такие факторы неживой природы как колебания температуры, изменение кислотности и градиента солености, радиация и нехватка питательных веществ.

Оба набора стрессов требуют от микроорганизмов определенных адаптивных реакций, зависящих от контекста. В процессе эволюции бактерии выработали широкий набор адаптивных механизмов, позволяющий им выживать в неблагоприятных условиях, одним из которых является регуляция транскриптома при помощи некодирующих малых РНК¹.

¹ Далее в тексте будет использовано одно из определений: нкРНК, малые некодирующие РНК, регуляторные РНК или малые РНК; в данной работе эти определения будут считаться синонимами

Традиционно внимание исследователей сосредоточено на изучении некодирующего транскриптома патогенных микобактерий, в частности, *M. tuberculosis*. Однако нельзя недооценивать значения изучения некодирующих РНК непатогенных видов микобактерий (или микобактерий окружающей среды). Данные исследования обеспечивают понимание эволюционных траекторий видов всего рода и путей адаптации, которые могли привести к появлению патогенных штаммов. Изучение регуляторных РНК свободноживущих микобактерий также важно для определения их экологической роли и понимания механизмов взаимодействия с другими микроорганизмами. Таким образом, расширение сферы исследований транскриптомов за пределы патогенных штаммов обеспечивает более целостный взгляд на микобактериальную биологию и эволюцию, что влияет и на поиск более оптимальных терапевтических стратегий.

Степень разработанности темы исследования

Исследование роли малых регуляторных РНК в адаптации микобактерий к стрессовым условиям представляет собой актуальное и многогранное направление в молекулярной биологии и микробиологии. Несмотря на то, что многие аспекты механизмов, связанных с нкРНК микобактерий известны для наиболее распространенного патогена *M. tuberculosis* и главной модельной микобактерии *Mycobacterium smegmatis* гораздо детальнее, чем для многих других бактерий, аннотация некодирующего транскриптома этих видов менее развита по сравнению с другими модельными видами бактерий (*E. coli, B. subtilis*) и ограничена лишь небольшом числом систематических исследований [1–4]. Известны лишь несколько микобактериальных нкРНК, для которых была выявлена функциональная значимость и доказана их молекулярная мишень [5; 6].

Следует отметить, что на сегодняшний день известно множество механизмов адаптации бактерий к стрессовым условиям, однако участие малых РНК в этих процессах остается все еще малоизученным аспектом. Накопление новых данных позволит расширить наше понимание молекулярных механизмов, лежащих в основе адаптации микобактерий к стрессам, и в долгосрочной перспективе может иметь практическое значение для разработки новых подходов в диагностике и терапии инфекционных болезней, вызываемых микобактериями.

Цели и задачи

Цель: изучение роли малых некодирующих РНК микобактерий в ответе на различные стрессы на примерах *M. smegmatis* и *M. tuberculosis*.

Для достижения этой цели были поставлены следующие задачи:

- 1. Характеризация транскриптомного ответа *M. smegmatis* в условиях холодового стресса и выявление некодирующих РНК, которые могут участвовать в адаптации к низким температурам.
- 2. Создание штамма M. smegmatis с делецией гена малой некодирующей РНК F6.
- 3. Описание штамма *M. smegmatis* с делецией гена малой некодирующей РНК с помощью высокопроизводительного секвенирования РНК и *in vitro* экспериментов.
- 4. Создание штамма *M. tuberculosis*, гиперэкспрессирующий малую некодирующую PHK MTS1338.
- 5. Характеризация штамма *M. tuberculosis* с гиперэкспрессией гена малой некодирующей PHK MTS1338 с помощью высокопроизводительного секвенирования PHK, *in vivo*, *ex vivo* и *in vitro* экспериментов.
- 6. Создание штамма *M. smegmatis* с гетерологичной транскрипцией гена малой некодирующей РНК *M. tuberculosis* MTS1338.
- 7. Описание штамма *M. smegmatis* с гетерологичной транскрипцией малой некодирующей PHK *M. tuberculosis* MTS1338 с помощью протеомного профилирования, *in vitro* и *ex vivo* экспериментов.

Научная новизна

- Впервые подробно проанализированы изменения транскриптома *M. smegmatis* при холодовом стрессе; выявлены группы генов, определяющих успешную адаптацию *M. smegmatis* к низким температурам; значительно расширена существующая аннотация регуляторных РНК *M. smegmatis*.
- Впервые охарактеризован фенотип и транскриптом штамма *M. smegmatis* с делецией гена малой РНК F6. Выявлено, что F6 принимает участие в регуляции ответа микобактерии на окислительный стресс и контролирует переход *M. smegmatis* в

состояние покоя; установлено, что молекулярной мишенью F6 является мРНК гена *MSMEG_4640*, который кодирует фактор ресусцитации RpfE2.

- Выявлена последовательность молекулярных событий, приводящих к транскрипции регуляторной РНК *M. tuberculosis* MTS1338 в условиях заражения *ex vivo*; установлено, что главным индуктором транскрипции MTS1338 является монооксид азота (NO), генерируемый индуцибельной NO-синтазой (iNOS).
- Впервые показано, что гиперэкспрессия MTS1338 в *M. tuberculosis* активирует транскрипцию ряда генов, способствующих выживанию бактерии *in vitro* в условиях, имитирующих макрофагальные стрессы.
- Впервые продемонстрировано, что гетерологичная транскрипция MTS1338 в *M. smegmatis* приводит к появлению у штамма ряда патогенных свойств, а именно повышает выживаемость бактерии в условиях инфекции *ex vivo* путем замедления созревания фаголизосом, модуляции транскрипции ряда цитокинов в инфицированных макрофагах и секреции бактерией потенциальных факторов вирулентности.

Теоретическая и практическая значимость работы

Полученные в ходе исследования результаты важны как для развития фундаментальной науки, так и для прикладного научно-медицинского использования. Определена роль малых некодирующих РНК в регуляции генной экспрессии и адаптации микобактерий к стрессовым условиям, а также их влияние на патогенные свойства микобактерий. Эти результаты способствуют глубокому пониманию молекулярных механизмов, лежащих в основе жизненных процессов бактерий.

На практике, работа открывает перспективы для дальнейшего изучения некодирующих PHK *M. tuberculosis* в области диагностики и терапии туберкулеза. Было продемонстрировано, что некодирующая PHK MTS1338 играет важную роль в патогенезе, что делает её перспективной кандидатной терапевтической мишенью, представляющей альтернативу существующим подходам. Возможность использования некодирующих PHK в качестве потенциальных биомаркеров и терапевтических мишеней требует дополнительных исследований и клинических испытаний для подтверждения их эффективности и безопасности.

Методология и методы исследования

В работе были использованы молекулярно-биологические, биохимические подходы, а также передовые методы транскриптомики и биоинформатического анализа. Для более глубокого понимания молекулярных механизмов действия некодирующих РНК были использованы методы высокопроизводительного РНК-секвенирования и массспектрометрического анализа протеома.

В работе также проводились микробиологические и цитологические исследования с использованием патогенных бактериальных культур и эукариотических клеток, что позволило более полно охарактеризовать взаимодействие некодирующих РНК в различных системах. Эксперименты с использованием животных проводились в Центральном научноисследовательском институте туберкулеза в строгом соответствии с этическими нормами, установленными Европейской конвенцией по защите позвоночных животных, используемых для исследовательских и научных целей под гарантией № А5502-11 Управления защиты лабораторных животных Национального института здравоохранения (NIH). Все этапы исследования *М. tuberculosis* выполнялись в лабораторных условиях Института биохимии им. Баха РАН, с соблюдением всех необходимых стандартов и рекомендаций, утвержденных Министерством здравоохранения Российской Федерации.

Положения, выносимые на защиту

1. Существует 56 некодирующих РНК *M. smegmatis*, которые изменяют свою экспрессию в условиях холодового стресса.

2. Малая некодирующая РНК *M. smegmatis* F6 регулирует переход бактерии в некультивируемое состояние путем прямого контроля экспрессии фактора ресусцитации MSMEG 4640 и вовлечена в ответ на окислительный стресс.

3. Основным тригтером транскрипции малой некодирующей РНК *M. tuberculosis* MTS1338 в условиях заражения *ex vivo* является NO, продуцируемый синтазой оксида азота iNOS.

4. Гиперэкспрессия MTS1338 повышает выживание *M. tuberculosis* в условиях разных стрессов и приводит к экспрессии ряда генов, связанных с адаптацией к неблагоприятным условиям.

5. Гетерологичная транскрипция MTS1338 в непатогенной бактерии *M. smegmatis* повышает выживание штамма при заражении макрофагов *ex vivo*, замедляет созревание фаголизосом и приводит к модуляции экспрессии ряда цитокинов.

6. Гетерологичная транскрипция MTS1338 в *M. smegmatis* меняет протеом и секретом бактерии, приводя к экспрессии потенциальных факторов вирулентности.

Степень достоверности результатов

Данные, полученные в работе, характеризуются надежностью и воспроизводимостью. Примененные подходы являются признанными стандартами в данной научной области; выявленные зависимости обоснованы с помощью статистических методов. Экспериментальные результаты непосредственно подтверждают выводы, изложенные в данной диссертации.

Апробация результатов исследования

Материалы диссертации были представлены в виде устных и стендовых докладов на российских и международных школах и конференциях: VIII Международная школа молодых ученых по молекулярной генетике «Генетическая организация и молекулярные механизмы живых систем», Звенигород, 19–23 ноября, 2018; 44th FEBS Congress 2019, Krakow, Poland, 6– 11 июля, 2019; EMBO | EMBL Symposium: New Approaches and Concepts in Microbiology, Heidelberg, Germany, 10–13 июля, 2019; VI Съезд биохимиков России, Дагомыс, 1–6 октября, 2019; EMBO | EMBL Symposium: The Non-Coding Genome, Heidelberg, Germany, 16–19 Октября, 2019; EMBO Workshop on Tuberculosis, Paris, France, 12–16 сентября, 2022; VII Съезд биохимиков, молекулярных биологов и физиологов России, Дагомыс, 3–7 октября 2022.

Структура и объем диссертации

Диссертационная работа имеет следующую структуру: введение, обзор литературы, материалы и методы, результаты, заключение, выводы, список литературы и приложения. Работа представлена на 162 страницах машинописного текста, содержит 1 таблицу, 51 рисунок и 19 приложений. Библиографический указатель включает 189 наименований.

Глава 1. Обзор литературы

1.1 Введение

Мусоbacterium tuberculosis, инфекционный агент туберкулеза, это бактериальный патоген, который чаще всего поражает легкие, но способен колонизировать и другие органы организма. Туберкулез остаётся одной из ключевых проблем здравоохранения на глобальном уровне и продолжает быть одной из основных причин смертей в странах с низким уровнем доходов [7].

М. tuberculosis характеризуется широким набором уникальных особенностей и способен адаптироваться к разнообразным стрессам, таким как голодание, гипоксия, окислительный, кислотный и нитрозативный стрессы; а также обладает сложными механизмами управления иммунными реакциями хозяина для установления персистирующей инфекции [8]. Понимание основ этого взаимодействия между *М. tuberculosis* и клетками иммунной системы хозяина, а также того, как именно патоген адаптируется к стрессам, имеет решающее значение для создания методов лечения нового поколения.

В этом контексте малые некодирующие РНК (нкРНК) *М. tuberculosis* являются интригующим и перспективным направлением исследований. Эти молекулы представляют собой ключевые регуляторы экспрессии генов у широкого набора организмов и играют особенно важную роль в механизмах вирулентности, адаптации к стрессу и резистентности к антибиотикам [9–11]. Таким образом, исследование микобактериальных нкРНК может привести к открытию новых направлений в диагностике, лечении и профилактике туберкулеза.

В данном обзоре основное внимание будет уделено различным методикам и подходам, используемым для исследования нкРНК в бактериях, основным механизмам их действия, истории изучения и современного состояния проблемы некодирующего транскриптома в микобактериях.

1.2 Подходы, использующиеся для поиска и характеризации бактериальных нкРНК

Транскриптомные подходы. Эта группа методов основана на секвенировании и анализе всей совокупности РНК транскриптов бактериальной клетки. Наиболее используемые на данный момент варианты этого подхода включают РНК-секвенирование и технологию ДНК-микрочипов

[12; 13]. С их помощью можно не только получить информацию, которая позволяет предположить местоположение генов нкРНК в геноме, но и охарактеризовать паттерн транскрипции каждого конкретного гена. К плюсам данного типа подходов можно отнести то, что он позволяет провести комплексный анализ, описывающий весь транскриптом организма. Полученные данные представляют собой количественные измерения, что делает возможным сравнение результатов экспрессии генов как между собой, так и в различных условиях. Также стоит отметить большое количество стандартизированных методик и вариантов анализа данных [14].

Тем не менее, существует ряд ограничений при использовании транскриптомных полходов. Прежде всего они касаются пределов чувствительности и ограниченного динамического диапазона (особенно в случае использования ДНК-микрочипов). Оценка транскрипции слабо транскрибируемых нкРНК может быть сильно занижена при анализе, или транскрипты оставаться невыявленными из-за того, что активно транскрибирующиеся РНК При этом, любые данные, насыщают систему детекции. полученные с помощью транскриптомных подходов, необходимо валидировать помощью с ряда других экспериментальных методов.

Вычислительные предсказания. Важная, активно развивающаяся в настоящий момент, группа методов, которая использует *in silico* подходы для предсказания генов нкРНК и их потенциальных функций. Биоинформатический анализ данных включает в себя обработку геномных последовательностей и вторичных структур при помощи алгоритмов и программ с целью поиска характерных мотивов и элементов, свойственных нкРНК [15]. Также в анализе используются данные сравнительной геномики, позволяющие идентифицировать консервативные области геномов у разных видов, и информация об уже известных промоторах и других регуляторных элементах.

Несмотря на ограничения *in silico* методов, связанные с предвзятостью алгоритма в отношении уже известных РНК-структур [16], они эффективны, масштабируемы и позволяют детектировать нкРНК, которые были упущены при экспериментальных скринингах. Тем не менее, самой существенной проблемой биоинформатических предсказаний является большое количество ложноположительных результатов, поэтому любые полученные в ходе такого анализа данные нуждаются в тщательной экспериментальной проверке.

Отдельно стоит упомянуть, что вычислительные методы активно используются для поиска мишеней бактериальных нкРНК [17; 18]. Существующие алгоритмы позволяют быстро проверять вероятность образования РНК-РНК дуплекса между нкРНК и потенциальными мРНК-кандидатами, что позволяет существенно ускорить и удешевить последующие экспериментальные этапы.

14

Экспериментальная валидация. После предсказания генов потенциальных нкРНК, необходимым шагом для подтверждения их существования и описания функциональной роли, является экспериментальное подтверждение. Для этого могут быть использован широкий набор разработанных методов, наиболее частые из которых включают нозерн-блот, ПЦР с обратной транскрипцией (ОТ-ПЦР), удлинение праймера и быструю амплификацию концевых фрагментов РНК (RACE) [19]. Эти методы также могут использоваться для определения уровней транскрипции малых РНК и их взаимодействия с другими молекулами.

Функциональные подходы. Большая группа экспериментальных методов, которая является неотъемлемой составляющей изучения бактериальных нкРНК, т.к. предоставляет прямые доказательства их биологической активности и регуляторных функций. В широком смысле, эти подходы включают в себя экспериментальные методы, направленные на изучение влияния нкРНК на экспрессию генов, клеточные процессы и фенотип микроорганизма.

Функциональные подходы часто опираются на манипуляцию уровнем и активностью нкРНК с последующей оценкой биохимических, транскриптомных, протеомных и фенотипических изменений, что позволяет получить представление о функциональной значимости нкРНК в бактериальной системе. Наиболее распространенными вариантами подобных манипуляций является создание мутантных штаммов бактерий, в которых транскрипция гена изучаемой нкРНК усилена (гиперэкспрессия) или полностью подавлена (делеция гена нкРНК) [19]. Реже используются системы, в которых количество нкРНК модулируется с помощью интерферирующего транскрипта, например CRISPRi технология [20]. Существуют также подходы, основанные на мутировании предположительно функционально значимых элементов нкРНК [19].

Полученный штамм может быть охарактеризован с помощью широкого профиля экспериментальных методов, включающих изучение любых фенотипических, биохимических и молекулярно-генетических свойств. При любом экспериментальном описании используется специальная система контролей: комплементированный мутантный штамм в случае нокаут метода и контрольные генетические конструкции в случае штамма с гиперэкспрессией.

Важной группой методов, используемых для описания нкРНК, являются репортерные подходы. Основной идеей репортерного подхода является проверка влияния нкРНК на экспрессию конкретного гена-мишени с помощью детектируемого сигнала, который продуцирует репортерный ген при экспрессии [21]. Распространенными вариантами репортерных генов являются ген зеленого флуоресцирующего белка *gfp* и ген β-галактозидазы *lacZ*. Ключевым этапом любого репортерного метода является внесение в регуляторную последовательность репортерного гена предполагаемого сайта связывания с изучаемой нкРНК. Возможность детекции сигнала позволяет оценить эффективность экспрессии полученной репортерной

15

конструкции в присутствии и отсутствии изучаемой нкРНК в условиях *in vivo*, что чаще всего позволяет напрямую подтвердить или опровергнуть гипотезу о её регуляторной активности в отношении данной мишени.

Еще одним мощным инструментом для изучения функций нкРНК являются методы с использованием транспозонов. При использовании транспозонного секвенирования, такого как Tn-seq, можно проанализировать влияние транспозонной вставки в разные места последовательности генома на фенотип бактерии [22]. Это метод обеспечивает глубокий анализ и позволяет идентифицировать как «эссенциальные» (незаменимые) гены нкРНК, так и отдельные фрагменты генов, кодирующие функционально значимые участки и регионы, включая области нкРНК.

Биохимические подходы. Биохимические подходы включают в себя различные методы, которые позволяют изучить свойства нкРНК и их взаимодействия с другими молекулами на молекулярном уровне. Они включают в себя различные типы хроматографии, спектроскопию, масс-спектрометрию, рентгеновскую кристаллографию и другие методики.

Одним из классических примеров подобного подхода является метод RNA pull-down, который часто применяется для идентификации молекулярных партнеров нкРНК [23]. Основной принцип pull-down метода заключается в том, что одна из интересующих нас молекул (обычно известная как «bait» или «приманка») модифицируется таким образом, чтобы ее можно было легко и специфически выделить из смеси. Эта «приманка» затем смешивается с другими молекулами (обычно в солевом буфере или клеточном лизате), и любые молекулы, которые взаимодействуют с «приманкой», ко-иммуносорбируются при изоляции.

Вариации pull-down методов включают различные стратегии мечения «приманки» и различные методы для ее выделения. Например, РНК-«приманка» может быть мечена биотином, который затем взаимодействует со стрептавидином, присоединенным к твердой подложке, такой как магнитные бусины. Альтернативно, если «приманка» — это белок, он может быть модифицирован с помощью эпитопов, которые затем могут быть выделены с использованием специфических антител.

После выделения комплекса «приманки» с молекулами-мишенями, взаимодействующие молекулы можно идентифицировать и характеризовать с помощью различных методов, включая масс-спектрометрию белков [24] и секвенирование РНК [25; 26].

Приведенная классификация представляет собой упрощенную условную И систематизацию наиболее применяемых методов, используемых для идентификации и характеристики нкРНК в бактериях. Выбор конкретной методологии определяется целью исследования, доступными уникальными особенностями ресурсами И изучаемого

биологического объекта. Комплексное применение разнообразных методик позволяет провести более глубокий анализ функций и регуляторных механизмов нкРНК в бактериальных системах.

1.3 Механизмы действия бактериальных нкРНК

Малые некодирующие РНК (нкРНК) играют ключевую роль в сложных процессах регуляции экспрессии бактериальных генов. Они представляют собой РНК длиной от ~30 до ~500 нуклеотидов, обычно без открытых рамок считывания. Они выполняют регуляторные функции на РНК уровне, влияя на разнообразные клеточные процессы, включающие ответ на различные стрессы, метаболические процессы и патогенез. При этом, нкРНК характеризуются пластичной транскрипцией, что позволяет быстро настраивать транскриптом и менять метаболизм бактерии, обеспечивая реакцию на новые условия [27].

Механизм действия большинства нкРНК, предполагает спаривание оснований нкРНК с комплементарными им областями мРНК-мишеней, что может влиять на стабильность или трансляцию последних. Малые некодирующие РНК могут быть разделены на два крупных подкласса: цис-кодируемые нкРНК (также называющиеся антисмысловыми РНК) и транскодируемые нкРНК (или межгенные нкРНК) (Рисунок 1).

Рисунок 1 – Схематичное изображение механизмов действия цис-кодируемых и транскодируемых нкРНК; адаптировано из [28]

Цис-кодируемые нкРНК транскрибируются с цепи ДНК, противоположной той, с которой идет транскрипция гена, который они регулируют. Они, как правило, характеризуются полной

комплементарностью с их мРНК мишенью, что обеспечивает формирование протяженного РНК-РНК дуплекса [29].

Примером хорошо изученной цис-кодируемой нкРНК является малая РНК SymR *E. coli*. Это малая РНК представляет собой транскрипт длиной 77 нуклеотидов, который комплементарен 5'-области мРНК SOS-индуцируемого токсина с экзонуклеазной активностью SymE [30]. В данном контексте SymR функционирует как РНК-антитоксин, действуя в качестве репрессора. Эта нкРНК контролирует уровень транскрипции *symE*, стимулируя деградацию мРНК этого гена. SymR представляет яркий пример того, как цис-кодируемые нкРНК могут играть решающую роль в поддержании клеточного гомеостаза.

Транс-кодируемые РНК, напротив, транскрибируются в межгенных локусах и имеют лишь ограниченную область комплементарности с их мРНК-мишенью (обычно 6-12 нуклеотидов). Это позволяет им участвовать в регуляции сразу нескольких транскриптов. Классический механизм действия транс-кодируемых малых РНК предполагает взаимодействие нкРНК с мРНК в области, находящейся рядом с сайтом связывания рибосом (или перекрывающей его), что может вести к активации или, чаще, к ингибированию трансляции [31]. Однако существует достаточно большое количество вариантов альтернативных механизмов, более подробное рассмотрение которых представлено в следующей главе.

1.3.1 Механизмы действия бактериальных транс-кодируемых нкРНК

Позитивная регуляция. Механизм активации экспрессии с помощью транс-кодируемых РНК может быть реализован в виде двух основных вариантов. Первый называется «антиантисенс» механизмом и подразумевает наличие в мРНК-мишени вторичной структуры в районе последовательности Шайна-Дальгарно, которая препятствует процессу трансляции. Малая некодирующая РНК, контролирующая экспрессию мРНК, способна взаимодействовать с ней, приводя к изменению вторичной структуры и высвобождению регуляторных последовательностей инициации трансляции.

Примером малой РНК, действующей согласно такому механизму, является нкРНК RNAIII патогенной бактерии *Staphylococcus aureus* [32]. RNAIII связывается с мРНК *hla*, что приводит к дестабилизации вторичной структуры типа «шпилька», которая ингибирует трансляцию. Важно отметить, что это не единственная функция RNAIII. Эта нкРНК также несет в своей последовательности открытую рамку считывания, кодирующую δ-гемолизин [33] и напрямую ингибирует трансляцию ряда генов, участвующих в процессах вирулентности [34; 35].

Второй механизм активации называется трансляционно-независимым и предполагает связывание малой РНК с кодирующей последовательностью транскрипта мРНК, что приводит к стабилизации последнего. Примером нкРНК, работающей по этому механизму, является SgrS из *Salmonella typhimurium*. SgrS контролирует экспрессию гена фосфатазы *yigL*, который необходим для выживания в условиях фосфосахарного стресса - состояния которое возникает у бактерий при накоплении фосфорилированных форм сахаров в клетке [36]. SgrS стабилизирует интермедиат бицистронного транскрипта *pldB-yigL*, который в нормальных условиях гидролизуется РНКазой Е (Рисунок 2). При этом, SgrS, подобно RNAIII, способна негативно регулировать экспрессию ряда генов (*ptsG, manX, sopD*) [37; 38] и содержит открытую рамку считывания короткого пептида SgrT [39].

Рисунок 2 – Схема механизма действия малой нкРНК SgrS *S. typhimurium*; адаптировано из [36]

Негативная регуляция. Негативная регуляция экспрессии является более частым эффектом действия бактериальных нкРНК и может быть реализована через механизм преждевременной терминации транскрипции, репрессии трансляции и стимулирования деградации мРНК.

Преждевременная терминация транскрипции происходит в том случае, если после спаривания нкРНК с её мРНК мишенью образуется транскрипционный аттенюатор – вторичная

структура, стимулирующая остановку транскрипции. Транскрипционная антитерминация является одним из двух открытых механизмов, согласно которым действует малая PHK RnaG патогенной бактерии *Shigella flexneri* [40]. RnaG регулирует экспрессию гена *icsA*, который кодирует белок, играющий ключевую роль в процессе инвазии в эпителиальные клетки кишечника. Авторы работы показали, что RnaG подавляет экспрессию *icsA* двумя способами. Первый происходит за счет транскрипционной интерференции: транскрипция с сильного промотора *RnaG* подавляет транскрипцию со слабого промотора *icsA* из-за того, что оба промотора перекрываются. Второй механизм репрессии заключается в том, что RnaG способна связываться с последовательностью, находящейся в открытой рамке считывания *icsA*, стимулируя образование внутреннего терминатора и, как следствие, преждевременно останавливая транскрипцию этого гена.

Ингибирование трансляции является наиболее изученным способом посттранскрипционной регуляции экспрессии, осуществляемой с помощью бактериальных регуляторных РНК, а также является самым распространенным механизмом их действия. Реализация этого варианта чаще всего заключается в прямой конкуренции нкРНК за сайт связывания рибосом мРНК мишени. Регуляторная РНК связывается с областью мРНК, перекрывающейся с последовательностью Шайна-Дальгарно, или достаточно близко от неё. Образование РНК-РНК дуплекса предотвращает дальнейшую ассоциацию мРНК с 30S-субъединицей рибосомы, блокируя трансляцию.

Каноничным примером такого механизма является взаимодействие нкРНК MicA *E. coli* с её мРНК-мишенью [41]. MicA транскрибируется в поздней стационарной фазе роста и подавляет экспрессию порина внешней мембраны OmpA путем спаривания с 5'-нетранслируемой областью мРНК *ompA* в районе последовательности Шайна-Дальгарно. Избыток MicA в клетке приводит к ингибированию связывания рибосомы с сайтом старта трансляции *ompA*, что в дальнейшем стимулирует деградацию транскрипта с помощью РНКазы E.

При этом для ингибирования трансляции нкРНК могут связываться не только с самой областью Шайна-Дальгарно, но и с фланкирующими ее регионами, которые контактируют с 30Sсубъединицей рибосомы. Это открывает потенциальные возможности для контроля экспрессии безлидерных мРНК с помощью нкРНК [42].

Схожий механизм ингибирования трансляции предполагает спаривание регуляторной РНК с определенными сайтами мРНК, которые располагаются в 5'-НТО, более чем за 100 нуклеотидов от сайта старта трансляции. Несмотря на удаленность от региона, контактирующего с 30S-субъединицей рибосомы, такое связывание также приводит к остановке инициации трансляции. Примером нкРНК, действующей согласно этому механизму, является малая РНК

20

GcvB *Salmonella enterica*, которая связывает некоторые свои мРНК-мишени в областях трансляционных энхансеров, удаленных от последовательности Шайна-Дальгарно [43].

Ещё один «ингибирующий» вариант действия нкРНК заключается в рекрутировании различных рибонуклеаз для регуляции деградации мРНК-мишени. Ингибирование трансляции, опосредованное малыми РНК, часто делает мРНК-мишень более доступной для различных рибонуклеаз, как, например, было описано для малой РНК E. coli MicA и регулируемого ей транскрипта ompA [41]. По всей видимости, это связано с тем, что рибосома больше не экранирует мРНК-мишень от действия рибонуклеаз. Однако деградация с помощью РНКаз может быть не только пассивным следствием ингибирования инициации трансляции, но и активным эффектом действия нкРНК. В этом случае, сайт образования дуплекса с нкРНК может располагаться практически в любом регионе мРНК. Примером нкРНК, действующей согласно такому механизму, является малая PHK MicC S. typhimurium, которая контролирует экспрессию порина OmpD. Регион, образующий РНК-РНК дуплекс с МісС находится в районе +67 – +78 относительно старт-кодона мРНК отрД [44]. Образование РНК-РНК дуплекса не оказывает прямого влияния на ингибирование инициации трансляции и не останавливает рибосому во время процесса элонгации. Малая РНК МісС направляет и активирует РНКазу Е для расщепления мРНК в сайте узнавания [45]. Особую роль в этом механизме играет 5'-конец нкРНК, на котором должна быть представлена монофосфатная группа. Именно 5'-конец регуляторной РНК делает РНК-РНК дуплекс уязвимым для атаки РНКазой Е, которая содержит специальный 5'чувствительный «карман». Взаимодействие 5'-монофосфата MicC и этого «кармана» запускает конформационную перестройку фермента в состояние, наиболее оптимальное для расщепления одноцепочечного субстрата. Во время этого процесса в активном сайте фермента размещается именно мРНК-мишень.

Опосредованное влияние. В случае би- и полицистронных транскриптов, влияние нкРНК на трансляцию может быть опосредованным и модулировать экспрессию одной рамки считывания через изменение экспрессии другой. Впервые этот механизм был показан для малой некодирующей РНК *E. coli* RyhB, которая участвует в регуляции процессов метаболизма железа. Матричная РНК транскрипционного железозависимого репрессора Fur имеет дополнительную рамку считывания (uof), которая содержит 28 кодонов, находится перед кодирующей последовательностью *fur* и перекрывается с ней с 5'-конца (Рисунок 3) [46]. Трансляция *fur* зависит от трансляции проксимальной рамки считывания *uof*, что было показано как в *in vitro*, так и в *in vivo* экспериментах. Рамка считывания *uof*, в свою очередь, содержит регион, комплементарный нкРНК RyhB. Образование соответствующего РНК-РНК дуплекса ингибирует трансляцию как самой *uof*, так и нижерасположенной открытой рамки считывания, ингибирует и трансляцию

транскрипционного фактора, что в итоге запускает экспрессию ряда генов, продукты которых необходимы для поступления и запасания железа.

Рисунок 3 – Организация мРНК *fur E. coli* и схематичное изображение её РНК-РНК дуплекса с нкРНК RyhB; адаптировано из [46]

Такое опосредованное влияние может приводить не только к ингибированию трансляции, но и к ее активации. Примером нкРНК, действующей согласно такому механизму, является регуляторная PHK патогенной бактерии *Pseudomonas aeruginosa* PhrS. PhrS опосредованно влияет на экспрессию гена одного из ключевых регуляторов чувства кворума - *pqrS* [47]. Транскрипт *pqrS* содержит дополнительную рамку считывания *uof*, вышерасположенную относительно целевого гена. Взаимодействие PhrS с мРНК *pqrS*, приводит к образованию PHK-PHK дуплекса с областью, находящейся перед сайтом посадки рибосом *uof*. Это взаимодействие изменяет вторичную структуру мРНК, открывая сайт посадки рибосом, что приводит к стимуляции трансляции обеих рамок считывания. Этот механизм активируется в условиях низкой концентрации кислорода и является первым примером того, как бактериальная нкРНК представляет собой связующее регуляторное звено между доступностью в среде кислорода и образованием биопленок.

Сочетание механизмов. Необходимо подчеркнуть, что описанные механизмы могут комбинироваться, и одна и та же нкРНК может как останавливать трансляцию, так и стимулировать деградацию своей мРНК мишени. Подобного рода сочетание характерно и для вышеописанной нкРНК RyhB. Взаимодействие RyhB с одной из её мишеней - мРНК гена супероксиддисмутазы *sodB* - в районе сайта связывания рибосомы, приводит к расщеплению

транскрипта мРНК в области, отдаленной от места взаимодействия более чем на 350 нуклеотидов [48]. На первом этапе происходит ингибирование инициации трансляции. После того, как «последняя» транслирующая рибосома проходит сайт эндонуклеазы, комплекс RyhB с шаперонным белком Hfq запускает опосредованное деградосомой расщепление транскрипта *sodB*. Предполагается, что многие другие нкРНК, участвующие в ингибировании трансляции, могут действовать согласно этому механизму. Тем не менее, на молекулярном уровне различить оба процесса достаточно сложно, что не позволяет сделать окончательного вывода о распространенности вышеописанного механизма.

Секвестрация белков. Существуют бактериальные нкРНК, механизм действия которых не предполагает прямого взаимодействия с мРНК мишенями, а связан с рекрутированием белков. Самым известным примером такой нкРНК является 6S РНК, широко распространенная у многих видов бактерий и одна из первых открытых бактериальных регуляторных РНК [49]. 6S РНК регулирует транскрипцию путем взаимодействия с холоферментом РНК-полимеразы, ассоциированной с сигма-фактором 70 (также известного, как сигма-фактор «домашнего хозяйства») [50]. Это взаимодействие происходит преимущественно в стационарной фазе роста и подавляет транскрипцию всех генов, находящихся под контролем сигма-фактора 70. Изменение паттерна экспрессии генов, происходящее вследствие этого процесса, приводит к адаптации бактерии к новым условиям и способствует выживанию. У некоторых бактерий также показан вклад 6S РНК в процесс споруляции [51]. Еще одной интересной особенностью 6S является то, что она может служить матрицей для синтеза еще одного типа коротких (менее 30 нуклеотидов) нкРНК, получившего название «пРНК» [52]. Предполагается, что пРНК могут участвовать в механизме освобождения 6S PHK из комплекса, образованного с PHK-полимеразой [53], однако описание точного механизма их действия требует дополнительных исследований. Предполагаемая модель действия 6S РНК схематично изображена на Рисунке 4.

Рисунок 4 – Модель действия 6S РНК *E. coli*; адаптировано из [54]

Малые РНК из семейства CsrB являются еще одним примером нкРНК, действующих путем секвестрации белков [55]. Гомологи CsrB-подобных РНК распространены среди многих эубактерий и участвуют в глобальном контроле разнообразных процессов, включающих углеродный метаболизм, образование биопленок, патогенез, секрецию различных молекул и т.д. Семейство нкРНК CsrB содержит множество сайтов связывания регуляторного белка CsrA. В форме димера этот белок способен взаимодействовать с сайтами посадки рибосом, тем самым ингибируя трансляцию [56]. Малые РНК семейства CsrB секвестируют CsrA, выступая в роли его антагониста. CsrA также обладает ауторегуляторным механизмом, т.к. способен косвенно активировать транскрипцию CsrB [57]. Описано большое количество Csr систем подобного типа, но в основе действия всех них лежит принцип секвестрации регуляторного белка. Приведенный выше механизм является еще одним примером того, как малая РНК может выступать в роли глобального мастер-регулятора и контролировать сразу большое количество независимых друг от друга процессов.

РНК-губки (RNA sponges). Малые некодирующие РНК могут участвовать в регуляции не только мРНК, но и других нкРНК. Такие регуляторные РНК называются «РНК-губками», а их основная функция заключается в модуляции активности других нкРНК путем их секвестрации.

Одним из примеров контроля экспрессии с помощью таких РНК-губок является регуляция активности вышеописанной нкРНК GcvB, участвующей в аминокислотном метаболизме. Активность GcvB контролируется с помощью двух РНК-губок – SroC и AgvB [58]. Малая РНК AgvB кодируется в гене бактериофага и способна связываться с нкРНК GcvB, напрямую конкурируя с её мишенями. Подобная секвестрация GcvB с помощью избытка AgvB приводит к повышению экспрессии гена *dppA*. Этот ген кодирует периплазматический связывающий компонент ABC-транспортера, и его мРНК является одной из важнейших мишеней GcvB. Ещё одна РНК-губка, SroC, может взаимодействовать с определёнными участками GcvB и также активировать её деградацию, уменьшая доступную концентрацию GcvB для её собственных мишеней [59]. Так как GcvB является мастер-регулятором нескольких мРНК, то и контроль её активности с помощью SroC выражается в изменении экспрессии генов целого регулона (Рисунок 5).

Рисунок 5 – Схематичное изображение механизма контроля нкРНК GcvB *S. enterica* с помощью РНК-губки SroC; адаптировано из [59]

Стоит подчеркнуть, что транскрипция РНК-губок может регулироваться и их собственными нкРНК-мишенями, создавая таким образом цикл обратной связи. Примером такой системы является контроль активности нкРНК ChiX, вовлеченной в регуляцию экспрессии генов,

продукты которых необходимы бактериям рода Salmonella для утилизации хитоолигосахарида хитобиозы [60]. В отсутствии индуктора, нкРНК ChiX и регулируемый ею оперон chiPQ, транскрибируются конститутивно. Взаимодействие ChiX и мРНК chiPQ стимулирует деградацию бицистронного транскрипта при помощи РНКазы Е, ингибируя синтез ChiP. В присутствии хитоолигосахаридов, индуктор связывается с транскрипционным фактором ChbR, что активирует его и стимулирует транскрипцию оперона chb. Последующий процессинг мРНК chb с помощью РНКазы Е приводит к созреванию РНК-губки chbBC ICR, которая выщепляется из интерцистронной области родительского транскрипта. Взаимодействие этой РНК-губки с нкРНК ChiX подавляет активность последней, что ослабляет негативный контроль экспрессии хитопорина ChiP. Сборка ChiP внешней мембране на усиливает поступление хитоолигосахаридов, что в свою очередь ещё больше активирует всю систему путём подавления активности ChiX с помощью РНК-губки chbBC ICR (Рисунок 6).

Рисунок 6 – Схематичное изображение регуляции экспрессии ChiP с помощью нкРНК ChiX; (А) Поведение системы в отсутствии индуктора, экспрессии ChiP нет; (В) Активация экспрессии ChiP в присутствии индуктора (хитобиозы); адаптировано из [60]

Бактериальные нкРНК во взаимодействии бактерий с макроорганизмом. Существует еще один принцип действия бактериальных нкРНК, который находится еще только на ранней стадии изучения, но уже существенно расширил представления о межвидовой коммуникации на уровне транскриптомов. Бактериальные малые РНК способны опосредовать взаимодействие бактерии и организма хозяина, напрямую модулируя экспрессию эукариотических генов (чаще всего связанных с иммунным ответом). Такой тип взаимодействия на данный момент более подробно изучен для патогенных бактерий, однако предполагается, что подобный контроль может осуществляться бактериями-симбионтами и комменсалами.

Впервые подобное взаимодействие было показано для *P. aeruginosa*, оппортунистического патогена, который является возбудителем синегнойной инфекции, одного из самых распространенных госпитальных заболеваний [61]. Коерреп и соавторы продемонстрировали, что в везикулах внешней мембраны, которые секретирует эта бактерия, содержится большое количество нкРНК [62]. Проведя биоинформатический скрининг, который включал в себя оценку стабильности вторичной структуры и поиск потенциальных мишеней среди эукариотических транскриптов, авторы сфокусировали свое внимание на малой PHK sRNA52320. Было продемонстрировано, что в процессе инфекции осуществляется прямой транспорт этой регуляторной PHK в цитоплазму клеток организма-хозяина. Там sRNA52320 подавляет экспрессию IL-8, одного из ключевых провоспалительных интерлейкинов макрофагов, предположительно связываясь с мPHK участников сигнального пути MAPK, активируемого липополисахаридами (Pucyhok 7). В свою очередь, это приводит к ослаблению иммунного ответа. Авторы считают, что действие sRNA52320 может напоминать механизмы эукариотических микроPHK, которые ингибируют трансляцию, взаимодействуя с небольшими областями мPHK. Тем не менее, точный молекулярный механизм sRNA52320 еще только предстоит выяснить.

Рисунок 7 – Схематичное представление механизма действия sRNA52320 *P. aeruginosa*; адаптировано из [62]

Секреция везикул внешней мембраны показана для многих грамотрицательных бактерий. В составе везикул могут находиться различные белки, липополисахариды, пептидогликаны и нуклеиновые кислоты, включая ДНК и РНК [63], поэтому усилия многих исследователей, бактериальных нкРНК изучающих влияние на транскриптом организма-хозяина, сконцентрированы именно на этом типе молекулярного транспорта. Необходимо подчеркнуть, что «упаковка» в везикулы также обеспечивает защиту РНК от действия рибонуклеаз. Тем не менее, это не единственный способ доставки бактериальных нкРНК в цитозоль клеток макроорганизма. Бактериальная малая РНК может транспортироваться в составе комплекса с белком; такой механизм был открыт у возбудителя листериоза, Listeria monocytogens [64]. В процессе инфекции эта бактерия секретирует белок Zea в комплексе с различными PHK, которые включают и нкРНК. Этот комплекс напрямую взаимодействует с рецептором, участвующем в распознавании вирусов, RIG-I, и активирует его, что приводит к модуляции иммунного ответа. Делеция гена zea влияет на вирулентность L. monocytogens, что выражается в статистически значимом снижении бактериальной нагрузки на селезёнку и печень в процессе инфекции мышей линии BALB/c.

Еще одним интересным вариантом реализации подобного взаимодействия является использование бактерией эукариотических систем процессинга РНК. Это было показано для нкРНК Sal-1 *S. enterica*, функция которой заключается в репрессии синтеза индуцибельной NOсинтазы iNOS [65]. Sal-1 попадает в цитоплазму клетки хозяина в виде транскриптапредшественника, который, образуя комплекс с белком Argonaute 2, процессируется в зрелую форму, мимикрирующую под эукариотическую микроРНК. Взаимодействие зрелой формы Sal-1 с транскриптом iNOS ингибирует трансляцию NO-синтазы, что, в итоге, снижает продукцию NO и повышает вирулентность патогена. Механизм, по которому Sal-1 транспортируется в клетку организма-хозяина, на данный момент неизвестен.

Не менее важной роль бактериальных нкРНК может быть и в случае симбиотических взаимодействий. Бактерия Vibrio fischeri живет в симбиозе с кальмаром Euprymna scolopes в специальном «светящемся» органе - фотофоре [66]. Именно бактерии обеспечивают люминесцентное свечение кальмара, что, как считается, играет роль в камуфлировании этого моллюска от хищников. Moriano-Gutierrez и соавторы показали, что малая PHK SsrA V. fischeri необходима для описанного симбиотического взаимодействия [67]. Эта нкРНК транспортируется в эпителиальные клетки кальмара в составе везикул и модулирует иммунный ответ хозяина, действуя, предположительно, через рецептор опознавания паттерна RIG-I. Несмотря на то, что штамм V. fischeri с делецией гена ssrA, также как и родительский штамм, может колонизировать фотофор кальмара, он не способен долгое время персистировать в организме-хозяине. При этом, уровень люминесценции фотофора, колонизированного мутантным штаммом, значительно ниже по сравнению с уровнем люминесценции при колонизации родительским штаммом. Профилирование транскриптома фотофора показало, что в случае колонизации штаммом $\Delta ssrA$ изменяется экспрессия ряда эукариотических генов, включая повышение экспрессии гена лакказы-3. Лакказа-3 – это внеклеточный белок, который вовлечен в синтез меланина и участвует в иммунном ответе у многих беспозвоночных [68]. Авторы полагают, что снижение уровня люминесценции связано именно с лакказой-3, так как этот фермент обладает оксидазной активностью и уменьшает концентрацию кислорода, необходимого для люциферинлюциферазной реакции V. fisheri [69]. Делеция гена нкРНК ssrA приводит к негативным последствиям как для самой бактерии (снижая её выживаемость в фотофоре кальмара), так и для организма-хозяина, который теряет способность к люминесценции. Детали механизма действия SsrA еще только предстоит изучить, но это первый и очень важный пример, показывающий, что действие бактериальной малой РНК может быть полезным для другого вида. Учитывая необычайное разнообразие и длинную эволюционную историю микробиома человека, можно предположить существование подобных нкРНК и механизмов взаимодействия у составляющих его бактерий.

1.3.2 Участие шаперонных белков в механизмах действия бактериальных нкРНК

Важно отметить, что наиболее подробно механизмы действия транс-кодируемых малых РНК описаны для грамотрицательных бактерий с участием шаперонного белка Hfq. Hfq является гомогексамерным белковым комплексом, представляющим собой тороид с большим количеством РНК-связывающих участков [70]. В его составе выделяют 4 крупных участка: дистальную сторону, проксимальную сторону, латеральное кольцо и внутренний неупорядоченный С-конец (Рисунок 8) [71].

Рисунок 8 – Кристаллическая структура шаперонного белка Hfq *E. coli*; адаптировано из [72]

Каждый обладает ИЗ участков сродством К определенным нуклеотидным РНК. Проксимальная последовательностям сторона преимущественно связывает последовательности, обогащенные урацилом; дистальная сторона связывает РНК, обогащенные последовательностью ARN (где A – аденин, R – аденин или гуанин, а N – любой нуклеотид), а латеральное кольцо обладает сродством к UA-богатым последовательностям. Некодирующие РНК взаимодействуют с проксимальной стороной Hfq при помощи поли(У)-тракта, который образуется при Rho-независимой терминации в процессе транскрипции. Малые PHK, которые связываются с Hfq, подразделяют на два класса: класс I способен взаимодействовать также с латеральным кольцом, а класс II с дистальной поверхностью. Считается, что нкРНК второго класса обладают большей стабильностью, чем нкРНК первого класса [73]. Транскрипты мРНК преимущественно взаимодействуют с дистальной и латеральной поверхностями Hfq. Hfq, таким образом, выступает в качестве площадки, облегчающей взаимодействие нкРНК и их РНК

мишеней на нескольких этапах: сближая обе РНК, изменяя их вторичные структуры, нейтрализуя отрицательный заряд и стимулируя образование дуплексов.

Стоит отметить, что С-конец Hfq, который варьирует по своей длине и последовательности у различных видов бактерий, также принимает участие в регуляции взаимодействия нкРНК с их мРНК мишенями. Было показано, что С-конец способен вытеснять двуцепочечные РНК с латеральной и проксимальной поверхностей Hfq, что способствует повторному использованию комплекса [74].

Нfq является наиболее изученным, но не единственным белком-шапероном, участвующим в механизмах действия транс-кодируемых нкРНК бактерий. Интерес многих научных групп на данный момент сосредоточен на изучении шаперонного белка ProQ, который содержит PHКсвязывающий домен FinO. ProQ, как и Hfq, является глобальным PHK-связывающим белком, который опосредует большое количество взаимодействий между малыми PHK и их мPHК мишенями. Эксперименты по ко-иммунопреципитации ProQ в *S. enterica* показали, что этот белок связывает сотни PHK-лигандов [75]. Анализ интерактома ProQ показал, что этот белок имеет отличную от Hfq роль, несмотря на небольшое пересечение в списках их PHK партнеров [76]. ProQ преимущественно связывает мPHK, а участок связывания транскриптов смещен к 3'-концу, что отличает ProQ от Hfq, связывающего мPHK в преимущественно в 5'-HTO [77]. Ещё одним отличием ProQ является его повышенная специфичность к более структурированным PHK. Тем не менее, функциональные особенности этого шаперона еще плохо изучены и подробный механизм его действия только предстоит открыть.

Роль шаперонных белков в механизмах действия нкРНК у грамположительных бактерий в настоящий момент широко обсуждается. Известно, что у одних бактерий (микобактерии, стрептоккоки, лактобациллы) гомологов Hfq и ProQ нет. У других (*S. aureus*) делеция гена *hfq* не приводит к заметным изменениям в фенотипе [78; 79]. При этом, гетерологичная экспрессия Hfq *S. aureus* в штамме *B. subtilis* с делецией собственного гена *hfq* не приводит к восстановлению фенотипа, что свидетельствует о том, что роль этого шаперона не во всех бактериях может быть связана с регуляцией нкРНК [80].

Существует предположение о том, что вероятность участия шаперонных белков в механизмах действия малых РНК зависит от ГЦ-состава организма [81]. Согласно этой гипотезе, чем ниже содержание гуанина и цитозина в геноме бактерии, тем менее вероятно участие Hfq во взаимодействии малых РНК и мРНК. Однако, актинобактерии являются очевидным исключением из данного предположения. У этого типа не обнаружено гомологов Hfq, при том, что у некоторых родов актинобактерий (стрептомицеты, микобактерии, франкии) ГЦ-состав доходит до 70%.

Холодошоковые белки представляются возможными кандидатами для исполнения функции РНК-связывающих шаперонов, участвующих в механизмах действия нкРНК.

Холодошоковый белок A (CspA) у *E. coli* является важнейшим белком для адаптации к холодовому стрессу; его роль заключается в дестабилизации вторичных структур PHK при низких температурах [82]. Однако, также было показано взаимодействие гомолога CspA y *S. aureus* с нкPHK в эксперименте по определению интерактома этого белка [83]. Это открытие послужило ключевой предпосылкой в выдвижении гипотезы о том, что CspA может опосредовать взаимодействие между нкPHK и мPHK у некоторых бактерий. В контексте микобактерий эта гипотеза впервые была представлена в обзорной статье Schwenk и Arnvig [84].

У *М. tuberculosis* обнаружено два холодошоковых белка - CspA и CspB. В исследовании 2018 года было показано, что оба этих белка взаимодействуют с кором PHK-деградосомы [85]. Это является косвенным свидетельством того, что эти белки также способны дестабилизировать жесткие вторичные структуры PHK, как их гомологи. Однако, действительно ли CspA способен регулировать активность нкPHK таким образом, каким это делают Hfq и ProQ, еще только предстоит выяснить.

1.4 Ландшафт малых некодирующих РНК микобактерий

Малые некодирующие РНК микобактерий представляют особый интерес как в области фундаментальных, так и прикладных исследований. Как и другие патогенные микроорганизмы, многие виды микобактерий в различных стадиях своего жизненного цикла встречают большое количество стрессирующих факторов, к которым необходимо быстро адаптироваться.

Механизмы действия микобактериальных нкРНК описаны гораздо хуже по сравнению с модельными организмами т.к. микобактерии не обладают известными шаперонными белками Hfq и ProQ [86] и характеризуются высоким ГЦ-составом генома (61-71% для видов, продуцирующих миколовые кислоты) [87]. На данный момент, с использованием технологий секвенирования на микрочипах и массированного параллельного секвенирования, у микобактерий открыто уже несколько десятков малых некодирующих РНК. Тем не менее, точные молекулярные механизмы, мРНК-мишени и функциональные роли были описаны лишь для нескольких регуляторных РНК.

1.4.1 Хронология аннотации некодирующего транскриптома микобактерий

Исследование нкРНК микобактерий началось в конце 2000-х годов. Одной из первых работ, положивших начало этому направлению, стала публикация 2009 года Arnvig и Young, в

которой было идентифицировано 9 нкРНК *М. tuberculosis* [88]. Авторы использовали секвенирование по Сэнгеру для анализа кДНК библиотек, синтезированных на основе низкомолекулярной фракции РНК, выделенной с помощью гель-электрофореза. Классификация полученных последовательностей позволила аннотировать 4 цис- и 5 транс-кодируемых нкРНК, транскрипция которых была подтверждена *in vivo* с помощью нозерн-блоттинга. Было показано, что гиперэкспрессия некоторых из открытых нкРНК в микобактериях приводит к ярким фенотипическим эффектам. Так, гиперэкспрессия малых РНК В11 и G2 привела к летальному фенотипу в M. tuberculosis и сильному замедлению скорости клеточного деления в M. smegmatis. Гиперэкспрессия F6 никак не повлияла на фенотип M. smegmatis, но в M. tuberculosis было отмечено сильное замедление скорости роста штамма. Авторы также впервые продемонстрировали факт изменения транскрипции некоторых микобактериальных нкРНК в ответ на действие стрессов; например, в условиях окислительного стресса у M. tuberculosis возрастала транскрипция B11, B5, F6 и ASpks.

В том же году с помощью гибридизации на ДНК-микрочипах было продемонстрирована высокая транскрипция некодирующих областей генома *M. leprae* [89]. Несмотря на то, что авторы не аннотировали отдельные гены нкРНК, это исследование стало первым, в котором был оценен масштаб некодирующего транскриптома микобактерий. Всего было выделено 68 активно транскрибирующихся некодирующих областей генома.

Через год вышла работа DiChiara и соавторов, где, в комбинации с биоинформатическими методами, был использован аналогичный подход для поиска нкРНК у *M. bovis* [1]. Авторы идентифицировали 37 нкРНК, 34 из которых были обнаружены впервые. Наличие гомологов некоторых идентифицированных нкРНК было предсказано у родственных микобактерий, а у *M. tuberculosis* и *M. smegmatis* они также были экспериментально подтверждены с помощью нозернблоттинга.

В 2011 году была опубликована статья, где был впервые применен полнотранскриптомный подход для поиска нкРНК микобактерий на примере *M. tuberculosis* в логарифмической и стационарной фазах роста [90]. Авторы показали, что некодирующие транскрипты составляют существенную фракцию транскриптома *M. tuberculosis* (3,9% и 3,8% от всех картированных последовательностей в экспоненциальной и стационарной фазах роста соответственно) и идентифицировали несколько новых регуляторных РНК. В этой же работе было показано накопление транскриптов некоторых нкРНК (MTS0997, MTS1338, MTS2823) *in vivo* в мышиной модели инфекции, что стало первым экспериментальным свидетельством, указывающим на участие малых РНК микобактерий в патогенезе.

В 2012 году вышла серия, состоящая из 2 работ, посвященная аннотации нкРНК *М. tuberculosis*, авторы которой комбинировали подходы РНК-секвенирования, гибридизации на

33

ДНК-микрочипах и консервационного анализа [91; 92]. С помощью секвенирования короткой фракции РНК и биоинформатического анализа был отобран набор, состоящий из более чем 1373 кандидатных нкРНК. Затем было проведено профилирование транскрипции этого набора в экспоненциальной фазе роста с использованием ДНК-микрочипов, которое подтвердило существование 258 транскриптов. В соответствии с классификацией, проведенной авторами, было выделено 22 межгенных и 152 антисенс нкРНК, некоторые из которых были подтверждены методом нозерн-блоттинга. В работе также был выполнен анализ канонических регуляторных последовательность -10 *sigA* в промоторной области, а 22,1% обладают терминаторными участками [91].

Коллектив авторов под руководством Contreras расширил существующую аннотацию некодирующих РНК *M. smegmatis* и *M. bovis* BCG, выделив 17 и 23 новых нкРНК для каждого вида соответственно [2]. Особенностью работы стало использование только биоинформатического алгоритма, разработанного Livny и соавторами [93], для предсказания генов нкРНК. Потенциальные транскрипты были подтверждены методом нозерн-блот. Для определения 5'- и 3'- концов нкРНК применялась комбинация РНК-секвенирования и RACE.

В 2013 году был впервые проведен анализ некодирующего транскриптома возбудителя микобактериоза *M. avium* с помощью метода PHK-секвенирования [94]. Авторы работы выделили 86 цис-кодируемых и 10 транс-кодируемых нкРНК, 6 из которых имели гомологи у других микобактерий. Также была показана зависимость транскрипции двух описанных нкРНК, igMAV_0468–0469 и igMAV_0469–0470, от генетического контекста организма-хозяина при заражении *in vivo*, что говорит об их участии в патогенезе. Данные регуляторные PHK активно транскрибируются только в модели инфекции чувствительных к туберкулезу мышей линии I/St, тогда как при заражении резистентных мышей линии B6, транскрибириются тих нкРНК подавляется.

Необычный подход поиска нкРНК был применен в работе Li и соавторов [95]. Авторы гетерологично экспрессировали Hfq E. coli в составе химерного белка с FLAG-тэгом в M. smegmatis. Затем, при помощи иммунопреципитации с использованием антител к FLAG-тэгу был белком РНК выделен пул связавшихся с химерным И отсеквенирован. После биоинформатического анализа удалось выявить 24 нкРНК (12 цис-, 12- транс-кодируемых); транскрипция каждой из которых была подтверждена с помощью нозерн-блоттинга. Дополнительно был проведен филогенетический анализ и показано существование гомологичных нкРНК у ряда других микобактерий.

Наиболее полное на данный момент профилирование некодирующего транскриптома *M. tuberculosis in vitro* было опубликовано в 2018 году [4]. Авторы методом РНК-секвенирования провели профилирование транскриптома низкомолекулярной фракции РНК *M. tuberculosis* в условиях действия различных стрессов (обедненная железом среда, SDS, кислотный и окислительный стрессы, недостаток питательных веществ). При этом было выявлено не только 103 новых нкРНК, но и показана динамика их транскрипции в различных условиях, что может быть использовано для характеристики и поиска функций каждой конкретной регуляторной РНК (Рисунок 9).

Рисунок 9 – «Тепловая» карта, отображающая изменение транскрипции малых РНК *М. tuberculosis* в различных стрессах; цветом обозначена величина изменения экспрессии конкретного гена; адаптировано из [4]

Ещё одна попытка аннотации малых РНК в *M. tuberculosis*, на основе данных РНКсеквенирования, была предпринята Ozuna и соавторами [96]. В работе был опубликован новый алгоритм поиска малых РНК, названный «baerhunter», а также его сравнение его с другими биоинформатическими моделями. Всего было предсказано от 300 до более чем 1000 нкРНК, большая часть которых подтверждалась экспериментальными данными по картированию сайтов старта транскрипции *M. tuberculosis*. Верификация истинных малых РНК из этого массива данных потребует долгой и скрупулезной работы, тем не менее эти результаты показывают, что количество нкРНК в геноме отдельного вида микобактерий, по всей видимости, приближается к нескольким сотням.

Стоит также обратить внимание на работы, посвященные поиску микобактериальных нкРНК в условиях заражения *ex vivo*. В 2021 было опубликовано исследование, в котором производился анализ некодирующего трансриптома *M. tuberculosis* и *M. bovis* ВСG в условиях заражения культуры моноцитов THP-1 [3]. В работе было обнаружено 490 нкРНК в *M. bovis* и 390 нкРНК в *M. tuberculosis*, причем более 96% всех РНК были аннотированы впервые. Авторы работы показали, что паттерны транскрипции нкРНК зависят от того, были бактерии поглощены макрофагами (внутриклеточная популяция) или ко-культивировались в одной среде (внеклеточная популяция): для каждой из групп бактерий было продемонстрировано преобладание транскрипции антисенс нкРНК, а для *M. bovis* – межгенных транскриптов. Функциональный анализ и *in silico* поиск мишеней показали ассоциацию большого количества нкРНК с липидным метаболизмом и процессами образования биопленок.

В результате многочисленных исследований, проведенных за последние 15 лет, удалось сформировать представление о репертуаре микобактериальных нкРНК и их значимости в различных биологических контекстах. Более того, с каждым годом растет как число открытых нкРНК, так и массив данных, свидетельствующих об их важной роли в жизни микобактерий.

Разносторонний анализ нкРНК в микобактериях выявил их участие в сложных регуляторных сетях, влияющих на экспрессию генов и способствующих адаптации бактерий. Идентификация регуляторных РНК, связанных с действием различных стрессирующих факторов и процессами инфекции подчеркивает их потенциал в качестве ключевых компонентов в ответе микобактерий на меняющиеся условия окружающей среды.
1.4.2 Примеры микобактериальных малых РНК

Для почти всех известных микобактериальных нкРНК характерен механизм репрессии экспрессии их мРНК мишени путем образования РНК-РНК дуплекса с небольшой областью регулируемого транскрипта. При этом, отсутствие у микобактерий известных шаперонных белков, участвующих в классических схемах действия малых РНК, поднимает вопрос об универсальности этих механизмов и является важной темой для будущих исследований. Ниже будут рассмотрены несколько примеров наиболее полно охарактеризованных микобактериальных регуляторных РНК, для которых была показана функция *in vivo* и доказана их молекулярная мишень.

Mcr7. Mcr7 – это первая малая PHK *M. tuberculosis*, для которой была установлена функция [97]. Эта нкРНК имеет длину ~350 нуклеотидов и характерна для всех видов туберкулезного комплекса, представители которого патогенны для человека и животных. Авторы обнаружили, что Mcr7 не транскрибируется в штаммах M. tuberculosis, имеющих делецию гена phoP. PhoP представляет собой один из белков двухкомпонентной системы PhoPR, которая контролирует экспрессию большого количества генов, связанных с вирулентностью [98]. Ген малой РНК был установлен в результате эксперимента ChIP-seq по поиску сайтов ДНК, которые связывает PhoP. Применив биоинформатический анализ, авторы выявили потенциальные мРНК мишени, с которыми может взаимодействовать 33-нуклеотидная петля, находящаяся в составе вторичной структуры Mcr7. Пересечение предсказанных мишеней с биологическими данными, которые показывали, что мутанты по гену phoP также характеризовались нарушением секреции с использованием трансмембранной системы Tat, позволило выявить молекулярную мишень Mcr7 - транскрипт гена *tatC*. Система Tat, в частности, необходима для секреции антигенов комплекса Ag85, вовлеченных в связывание фибронектина и участвующих в процессе клеточной инвазии [99; 100]. Мсг7 образует РНК-РНК дуплекс с предсказанным сайтом посадки рибосом и первыми 6-ю кодонами мРНК *tatC*, что ингибирует трансляцию этого транскрипта. Таким образом, малая РНК Mcr7 представляет собой регуляторное звено, связывающее транскрипционный фактор PhoP и секрецию различных компонентов, участвующих в патогенезе. Механизм действия Мсг7 изображен на Рисунке 10.

Рисунок 10 – Схематичное изображение механизма действия нкРНК *M. tuberculosis* Mcr7; адаптировано из [5]

В11 (6C). Ген регуляторной РНК 6С был впервые предсказан у ГЦ-богатых бактерий, в том числе и микобактерий, на основе гомологии геномных последовательностей [101]. Название 6С происходит от шести остатков цитозина, находящихся в консервативной вторичной структуре нкРНК «петля-стебель». Позднее транскрипция этой малой РНК в *M. tuberculosis* была подтверждена экспериментально [88] и переименована в В11. Было показано, что гиперэкспрессия этой малой РНК в *M. tuberculosis* приводит к нежизнеспособному фенотипу. В 2019 году Маі и соавторы детально охарактеризовали В11 *M. tuberculosis*, используя в качестве модели *M. smegmatis* [86]. Профилирование транскриптома при индуцибельной транскрипции В11 в *M. smegmatis* методом РНК-секвенирования позволило выявить гены, которые начинают дифференциально экспрессироваться при гиперэкспрессии этой малой РНК. С помощью биоинформатического алгоритма была произведена оценка способности к взаимодействию В11 с мРНК транскриптом каждого дифференциально экспрессированного гена и отобран список из 47 потенциальных мРНК мишеней. С помощью специально сконструированной репортерной

системы авторы подтвердили, что 15 случайно выбранных из отобранного списка генов действительно негативно регулируются при гиперэкспрессии В11. Наблюдаемый при этом фенотип (сильное замедление скорости роста) авторы связали с репрессией гена ДНК-хеликазы *dnaB*. Искусственное снижение концентрации транскрипта *dnaB* в клетке при помощи системы CRISPR-интерференции вызвало такое же замедление роста и удлинение клеток, как и гиперэкспрессия В11. Несмотря на большой массив экспериментальных данных, физиологическая роль этой малой РНК в *M. tuberculosis* остается не до конца ясной, а попытки создать делеционный мутант по гену В11 не увенчались успехом.

Гомолог В11 был также изучен у патогенного вида *M. abscessus*, штамм с делецией гена этой малой РНК которого удалось создать [102]. Было показано, что делеция гена малой РНК В11 приводит к повышению вирулентности штамма и увеличивает продукцию ряда цитокинов в контексте инфекции. Транскриптомное профилирование выявило, что В11 негативно регулирует экспрессию более 200 генов, в том числе генов системы секреции ESX-4, которая играет важную роль в патогенезе *M. abscessus*. Контроль экспрессии одного из компонентов ESX-4, гена *ессВ4* был подтвержден с помощью специально созданной репортерной системы: В11 взаимодействует с мРНК *ессВ4* в области сайта связывания рибосом, останавливая трансляцию. Таким образом, B11 в *M. abscessus* выполняет роль негативного регулятора вирулентности.

MrsI. Одним из важнейших стрессирующих факторов, к которым внутриклеточные патогены должны адаптироваться во время инфекции, является ограничение доступности ионов железа [103]. MrsI - малая некодирующая PHK *M. tuberculosis*, транскрипция которой сильно возрастает при выращивании культуры на среде с недостатком ионов железа, участвует в адаптации к этому состоянию [4]. Делеция гена *mrsI* приводит к повышению экспрессии целого ряда генов, участвующих в метаболизме железа. С помощью биоинформатического анализа среди этих генов была выявлена кандидатная мишень - бактериоферритин *bfrA*, что было экспериментально подтверждено с помощью специально сконструированной репортерной системы. Таким образом, MrsI напрямую ингибирует экспрессию гена *bfrA*, влияя на паттерн метаболизма железа. В конечном итоге, это позволяет бактерии быстрее адаптироваться к недостатку ионов этого металла. Вторичная структура MrsI и её функциональный домен изображены на Рисунке 11.

Рисунок 11. Вторичная структура малой РНК MrsI; взаимодействующий с мРНК мишенью участок выделен красной рамкой; адаптировано из [4]

MTS2823 (Ms1). MTS2823 выделяется среди других известных микобактериальных нкРНК своим необычным механизмом действия. Эта малая РНК характеризуется активной транскрипцией у *M. tuberculosis* в модели мышиной инфекции [104] и консервативной среди всех микобактерий вторичной структурой. MTS2823 является гомологичной вышеописанной 6S PHK (Глава 1.3.1), функция которой в *E. coli* связана с регуляцией генов, находящихся под контролем сигма-фактора 70 [50]. Hnilikova и соавторы определили, что MTS2823 также взаимодействует с коровым ферментом РНК-полимеразы, но, в отличие от большинства других видов бактерий, для этого не требуется участия сигма-фактора [105]. В исследовании, опубликованном в 2019 году, было показано, что MTS2823 является самой представленной нерибосомной РНК в стационарной фазе роста у M. smegmatis [106]. Транскрипция MTS2823 также возрастает в условиях этанольного стресса и голодания. Авторы полагают, что основной функцией Ms1 является «консервация» пула кор-фермента РНК-полимеразы во время неблагоприятных условий. Сохранение этого пула позволяет быстро возобновить транскрипцию, когда бактерия снова попадает в благоприятные условия. Последние данные показывают, что MTS2823 характеризуется специальной модификацией – 5' конец этой нкРНК содержит кэп в виде окисленной формы никотинамидадениндинуклеотида (NAD+) [107]. По всей видимости, эта

модификация ответственна за повышенную стабильность MTS2823, которая наблюдается в стационарной фазе роста.

1.5 Заключение

Описанные данные подчеркивают многообразие и сложность механизмов, с помощью которых некодирующие РНК участвуют в регуляции генной экспрессии в бактериях, в частности, в *M. tuberculosis*. Являясь важнейшим элементом адаптации к меняющимся условиями, нкРНК представляют собой перспективную терапевтическую мишень, которая может быть использована для диагностики и лечения туберкулеза. Изучение нкРНК также имеет важное значение и для фундаментальной науки: исследование этих молекул способствует расширению нашего понимания сложной регуляторной сети, которая определяет жизнедеятельность бактерий.

Глава 2. Материалы и методы

2.1 Используемые бактериальные штаммы, культивирование и условия роста

<u>Мусоbacterium smegmatis</u>. Во всех проведенных экспериментах с *M. smegmatis* использовали штамм *M. smegmatis* MC2 155, который был получен из коллекции Института биохимии имени А.Н. Баха РАН; все рекомбинантные штаммы были получены на его основе. В качестве стандартной среды для культивации *M. smegmatis* использовали питательную среду Nutrient Broth (HiMedia, Индия) с добавлением 0,05% детергента Tween 80 (Sigma Aldrich, США). Для приготовления твердой среды в неё добавляли 1,5% агара (Difco, Нидерланды). При применении других сред культивации этой бактерии подробности указаны в описании соответствующих экспериментов.

Для получения культуры *M. smegmatis* в жидкой питательной среде, штамм засевали в 5 мл стерильной среды и растили в течение 24–48 часов в орбитальном шейкере (200 об/мин) при 37°С. Полученную культуру использовали для вторичного посева в стерильную питательную среду в соотношении 1:100. Инкубацию культуры продолжали при 37°С при постоянном перемешивании (200 об/мин) до достижения необходимой фазы роста. Для культивации рекомбинантных штаммов *M. smegmatis* в питательную среду добавляли соответствующий антибиотик.

<u>Мусовасterium tuberculosis</u>. Во всех проведенных экспериментах с *M. tuberculosis* использовали штамм *M. tuberculosis* H37Rv, который был получен из коллекции Института биохимии имени А.Н. Баха РАН; все рекомбинантные штаммы *M. tuberculosis* были получены на его основе. Эксперименты с заражением мышей *in vivo* и культур перитонеальных макрофагов *ex vivo* проводили на базе Центрального научно-исследовательского института туберкулёза, все остальные эксперименты с культурами *M. tuberculosis* проводили в Институте биохимии имени А.Н. Баха РАН. В качестве стандартной среды для культивации *M. tuberculosis* использовали питательную среду Sauton (Sigma-Aldrich, США) с добавлением 10% ростовой добавки альбумин-декстроза-каталаза (HiMedia, Индия) и 0,05% Tween 80. Для приготовления агаризованной среды в неё добавляли 1,5% агара. При применении других сред культивации этой бактерии подробности указаны в описании соответствующих экспериментов.

Первичный посев проводили в 5 мл жидкой среды и культивировали 7 суток при 37°С в орбитальном шейкере (200 об/мин). Полученную культуру использовали для вторичного посева в стерильную питательную среду, инкубацию продолжали при 37°С в орбитальном шейкере (200

об/мин) до достижения необходимой фазы роста. Для культивации рекомбинантных штаммов в питательную среду добавляли соответствующий антибиотик.

Escherichia coli. Для всех промежуточных генно-инженерных работ использовали штамм *E. coli* XL1-Blue (Евроген, Россия). В качестве стандартной среды для культивации *E. coli* применяли жидкую питательную среду LB (Sigma-Aldrich, США) или LB-агар. Культивацию в жидкой среде проводили при 37°C в орбитальном шейкере (200 об/мин) в течение 12–16 часов.

2.2 Оценка оптической плотности бактериальной культуры

Для оценки роста бактериальной культуры 1 мл культуры в жидкой питательной среде помещали в стерильную одноразовую акриловую кювету (Sarstedt, Германия) и измеряли оптическую плотность при длине волны 600 нм с помощью спектрофотометра UNICO 2100 (UNICO, США). Для калибровки прибора использовали стерильную питательную среду, аналогичную по составу той, в которой выращивали данную бактериальную культуру. Все измерения проводили в технических трипликатах.

2.3 Выделение нуклеиновых кислот

<u>Тотальная РНК</u>. Бактериальные культуры, выращенные до требуемой фазы роста, центрифугировали (4°С, 4000 об/мин, 10 мин) и удаляли супернатант. Клеточный осадок ресуспендировали в 1 мл реагента TRIzolTM (Thermo Fisher Scientific, США), помещали в 2 мл пробирку, добавляли 0,1 мм циркониевые шарики (BioSpec Products, США) и гомогенизировали с помощью прибора BeadBeater (BioSpec Products, США). В случае экстракции тотальной РНК из легких мышей или культур макрофагов, шаг гомогенизации проводили аналогичным образом.

Полученный гомогенат центрифугировали для осаждения клеточного дебриса (4°С, 12000 g, 2 минуты), супернатант отделяли и переносили в 2 мл пробирку. После этого добавляли 200 мкл хлороформа (Химмед, Россия) и центрифугировали (4°С, 12000 g, 15 минут). Водную фазу переносили в 2 мл пробирку, добавляли половинный объем фенола (pH 5,0) и интенсивно перемешивали. После этого добавляли объем хлороформа, равный объему добавленного фенола, перемешивали и центрифугировали (4°С, 12000 g, 15 минут). Весь цикл повторяли 3 раза, после чего водную фазу переносили в 1,5 мл пробирку, смешивали с равным объемом изопропанола (Химмед, Россия) и инкубировали на льду 40 минут. Затем центрифугировали (4°С, 12000 g, 40

минут), супернатант отбирали, осадок осторожно промывали 500 мкл охлажденного 80% этанола. Центрифугировали (4°C, 12000 g, 30 минут), супернатант удаляли и 5-10 минут подсушивали на воздухе. Полученный осадок растворяли в 10-30 мкл деионизированной воды.

После выделения РНК обрабатывали ДНКазой TurboDNase (Thermo Fisher Scientific, США) для удаления следовых количеств геномной ДНК в соответствии с протоколом производителя. Чистоту и концентрацию выделенной РНК оценивали при помощи спектрофотометра NanoDrop 2000C (Thermo Fisher Scientific, США).

<u>Фракция коротких PHK</u>. Пробы тотальной PHK смешивали с равным объемом буфера RNA Gel Loading Dye (Thermo Fisher Scientific, CША) и денатурировали при 70°C в течение 5 мин. Далее пробы охлаждали на льду и проводили электрофорез в соответствии с протоколом [108] в денатурирующем 15% полиакриламидном геле, содержащем мочевину в концентрации 7М. После окончания электрофореза гель вымачивали в растворе бромистого этидия (0,5 мкг/мл) для визуализации PHK и аккуратно вырезали область, содержащую фракцию нкPHK (30-500 нуклеотидов) при помощи скальпеля. Фрагмент вырезанного геля помещали в 2 мл пробирку, добавляли 1,3 мл 0,3 M раствора NaCl и инкубировали при 37°C в течение 12 часов. Затем пробы центрифугировали и отбирали супернатант в чистую 2 мл пробирку. Элюированную PHK выделяли из раствора фенол-хлороформным методом с последующим спиртовым осаждением в соответствии с протоколом, описанным для тотальной PHK.

Геномная ДНК. Бактериальные культуры, выращенные до логарифмической фазы роста, центрифугировали (4°C, 12000 g, 2 минуты), супернатант удаляли, осадок ресуспендировали в 1 мл лизирующего буфера (100 мМ NaCl, 50 мМ Tris HCl pH 8,0, 10 мМ ЭДТА, РНКаза А (в финальной концентрации 200 мкг/мл) (Thermo Fisher Scientific, США)) и переносили в 2 мл пробирку. К суспензии добавляли 0,1 мм циркониевые шарики и лизировали при помощи гомогенизатора BeadBeater. Полученный гомогенат центрифугировали (4°С, 12000 g, 2 минуты), супернатант отделяли и переносили в 2 мл пробирку. К лизату добавляли SDS (финальная концентрация 1%), 10 мкл протеиназы К (10 мг/мл) (SibEnzyme, Россия) и инкубировали 2 часа при 55 °С. После этого к добавляли объем фенола (pH 8,1), равный половине объема лизата, такой же объем хлороформа, интенсивно перемешивали и центрифугировали (4°С, 12000 g, 15 минут). Водную фазу отбирали в 2 мл пробирку, добавляли равный объем хлороформа, интенсивно перемешивали, центрифугировали (4°С, 12000 g, 15 минут) и водную фазу переносили в 1,5. мл пробирку. К экстрагированной ДНК добавляли 0,1 объема 3 М ацетата натрия (рН 5,2), равный объем изопропанола и инкубировали на льду 1 час. Затем центрифугировали (4°С, 12000 g, 30 минут), супернатант отбирали, осадок осторожно промывали 70% этанолом и 5-10 минут подсушивали на воздухе. Полученный осадок растворяли в 10-30 мкл деионизированной воды.

<u>Плазмиды</u>. Колонии с чашек Петри, прошедшие необходимую селекцию, переносили в пробирки, содержащие по 5 мл питательной среды LB с соответствующим селективным антибиотиком, и инкубировали от 12 до 18 часов на микробиологической качалке (200 об/мин, 37°С). Затем клетки центрифугировали (1700 g, 1 мин) и производили выделение плазмид из осажденной культуры при помощи набора Plasmid Miniprep (Евроген, Россия) в соответствии с протоколом производителя. Концентрацию выделенной плазмиды оценивали при помощи спектрофотометра NanoDrop 2000С.

2.4 Электрофоретическое разделение нуклеиновых кислот в геле

Смесь общим объемом 8 мкл, содержавшую 2 мкл буфера для нанесения Gel Loading Dye, Blue (Евроген, Россия) и 6 мкл смеси амплификации, а также маркер длин ДНК 1 kb DNA Ladder (Евроген, Россия) или 100+ bp DNA Ladder (Евроген, Россия) общим объемом 7 мкл, наносили на агарозный гель (от 0,5–2% в зависимости от предполагаемой длины разделяемых нуклеиновых кислот), содержащий бромистый этидий в концентрации 1 мкг/мл, помещенный в камеру, заполненную 0,5-кратным трис-боратным буфером. Электрофорез проводили при напряжении 100 В в течение 40-60 минут. Нуклеиновые кислоты в геле визуализировали с помощью трансиллюминатора для электрофореза, объединённого с системой видеозахвата G:box (Syngene, Великобритания). Выделение продуктов амплификации из геля проводили с помощью коммерческого набора Monarch[®] DNA Gel Extraction Kit (NEB, CША) в соответствии с протоколом производителя.

2.5 Рестрикция и модификация нуклеиновых кислот

Все реакции рестрикции нуклеиновых кислот проводили с помощью эндонуклеаз рестрикции XbaI, BamHI, HindIII, DraI, EcoRI или PacI производства Thermo Fisher Scientific (США) в соответствии с протоколами производителя.

Достройку или гидролиз выступающих одноцепочечных фрагментов ДНК выполняли с помощью Т4 ДНК полимеразы (Thermo Fisher Scientific, США).

Все реакции лигирования были выполнены с использованием Т4 ДНК лигазы (Thermo Fisher Scientific, США).

Фосфорилирование и дефосфорилирование 5'-концов ДНК выполняли с помощью Т4 полинуклеотид киназы (Thermo Fisher Scientific, США) и фермента Antarctic Phosphatase (NEB, США) соответственно.

2.6 Полимеразная цепная реакция (ПЦР)

Смесь общим объемом 25 мкл, содержавшую 16,25 мкл деионизированной воды, по 1,25 мкл каждого праймера (прямой и обратный) в концентрации 10 мкМ, 1 мкл матрицы (до 10 нг ДНК), 0,25 мкл полимеразы высокой точности Q5[®] (0,02 Ед/мкл в финальной концентрации) (NEB, США) и 5 мкл реакционного буфера 5X Q5[®] (NEB, США) подвергали амплификации в приборе для ПЦР РТС-200 (MJ Research Inc.) по следующей программе:

шаг 1: 98°С – 30 секунд (начальная денатурация)

шаг 2: 98°С – 10 секунд (денатурация)

шаг 3: 50–72°С – 15 секунд (отжиг при специфичной для данной пары олигонуклеотидов температуре)

шаг 4: 72°С – 25 секунд на каждые 1000 п.н. (элонгация)

шаг 5: 72°С – 2 минуты (финальная элонгация)

Шаги 2-4 повторяли последовательно 25–30 циклов, в зависимости от сложности матрицы. В случае ГЦ-богатых матриц в общую реакционную смесь добавляли 5 мкл реактива Q5[®] High GC Enhancer (NEB, CША).

Подбор температуры отжига праймеров осуществляли с помощью онлайн-программы NEB Tm Calculator (<u>https://tmcalculator.neb.com/</u>). Анализ вторичных структур подобранных олигонуклеотидов и вероятность образования праймер-димеров проводили с помощью вебсервиса OligoAnalyzerTM Tool (<u>https://www.idtdna.com/calc/analyzer</u>). Синтез всех используемых в работе олигонуклеотидов был произведен компанией Евроген (Россия); список всех олигонуклеотидов приведет в приложении А.

Очистку полученных фрагментов проводили с помощью коммерческого набора Monarch[®] PCR & DNA Cleanup Kit (NEB, CША) в соответствии с протоколом производителя.

ПЦР-скрининг колоний проводили с помощью готовой смеси для ПЦР ScreenMix (Евроген, Россия) в соответствии с протоколом производителя.

2.7 Синтез кДНК и ОТ-ПЦР в реальном времени (количественная ПЦР)

Для оценки транскрипции отдельных генов использовали метод количественной ПЦР, сопряженный с обратной транскрипцией (ОТ-ПЦР). Для этого из 1 мкг тотальной РНК синтезировали кДНК с использованием гексануклеотидов со случайной последовательностью (Евроген, Россия) и обратной транскриптазы SuperScript III (Thermo Fisher Scientific, США) в соответствии с протоколом производителя.

Для проведения количественной ОТ-ПЦР использовали синтезированную кДНК в качестве матрицы, специфичные для каждого гена олигонуклеотиды и смесь для ПЦР qPCRmix-HS SYBR (Евроген, Россия). Амплификацию проводили в системе LightCycler[®] 96 Real Time PCR System (Roche, Швейцария). Протокол амплификации состоял из 40 циклов, каждый из которых включал 3 шага: денатурацию (95°C на протяжении 20 сек), отжиг праймеров (60°C на протяжении 20 сек), и элонгацию (72°C на протяжении 30 сек). После завершения всех циклов проводилась полная денатурация продукта путем нагрева до 98°C. Для каждого эксперимента были использованы 3 биологических и 9 технических репликатов. Результаты анализировали с помощью программного обеспечения LightCycler96 (Roche, Швейцария) и программу LinRegPCR v2018,3 (Heart Failure Research Center, Нидерланды). Для нормирования данных бактериальных транскриптов использовали транскрипцию гена 16S pPHK, эукариотических – транскрипцию гена β-Актина.

2.8 Получение компетентных клеток и трансформация

<u>M. smegmatis</u>. Получение компетентных клеток *M. smegmatis* и трансформацию проводили в соответствии с протоколом, описанным R. Goude и T. Parish [109].

Культивируемый штамм *M. smegmatis* растили до средней логарифмической фазы роста (ОП₆₀₀ = 0,8–1,0) в объеме 100–300 мл, затем инкубировали на льду 90 минут и центрифугировали (4°С, 3000 g, 10 мин). Клеточный осадок трижды промывали 10% раствором глицерина (Sigma-Aldrich, США) и ресуспендировали в объеме от 2 до 6 мл 10% раствора глицерина. Полученную суспензию делили на аликвоты по 200 мкл и замораживали до дальнейшего использования.

Для проведения трансформации пробирку с компетентными клетками размораживали на льду, добавляли 0,5–5 мкг плазмиды, которую предварительно растворяли в деионизированной воде в объеме до 5 мкл, переносили в кюветы для электропорации (Bio-Rad, CША) и проводили электропорацию при помощи прибора Gene Pulser Xcell Total System (Bio-Rad, CША).

Используемые настройки: напряжение 2,5 кВ, электрическая ёмкость 25 мкФ, сопротивление 1000 Ом. После этого клетки инкубировали на льду 10 минут, переносили в 5 мл жидкой питательной среды и инкубировали в орбитальном шейкере (200 об/мин) при 37°C в течение 2 часов. Затем культуры центрифугировали (4°C, 3000 g, 10 мин) и высевали на чашки Петри с селективной агаризованной питательной средой. Чашки Петри инкубировали в термостате при 37°C в течение 3–5 дней до появления колоний.

<u>M. tuberculosis</u>. Получение компетентных клеток <u>M. tuberculosis</u> и трансформацию проводили в соответствии с протоколом Parish и Stoker [109] и почти аналогичным протоколу для *M. smegmatis*, который был описан выше. Отличия заключались в том, что культуру <u>M. tuberculosis</u> не инкубировали на льду на начальном этапе; инкубацию в жидкой среде после электропорации проводили 24 часа и последующая инкубация на твердой питательной среде длилась 3–4 недели.

<u>*E. coli*</u>. Компетентные клетки *E. coli* штамма XL1-Blue (Евроген, Россия) размораживали на льду, добавляли 5 мкл реакционной смеси лигирования, перемешивали и инкубировали на льду 40 минут. Трансформацию осуществляли путём «термического» шока, на 45 секунд помещая клетки в термостат на 42°C. После этого клетки вновь инкубировали на льду 10 минут, добавляли 800 мкл стерильной среды LB и инкубировали в ротационном шейкере (300 об/мин) 1 час при 37° C. Затем культуру центрифугировали (1700 g, 1 мин), отбирали супернатант, осадок ресуспендировали в 100 мкл жидкой среды. Полученную суспензию высевали на агаризованную питательную среду с добавлением селективного антибиотика и инкубировали 12–16 часов в термостате при 37° C.

2.9 Создание штамма *M. smegmatis* с делецией гена нкРНК F6 (ΔF6)

Для создания делеционного мутанта *M. smegmatis* по гену малой РНК F6 мы применили двухстадийный метод замены аллеля при помощи генно-инженерной конструкции p2NIL/pGOAL19 (Addgene, CША) в соответствии с протоколом, описанным в работе Parish и Stoker [110]. Для этого методом ПЦР амплифицировали фланкирующие ген F6 1,5-кб области ДНК с помощью олигонуклеотидов LHA_F6_F/R и RHA_F6_F/R и лигировали полученный продукт в вектор p2NIL по рестрикционным сайтам BamHI и HindIII с использованием T4 лигазы (Thermo Fisher Scientific, США). Полученную конструкцию рестрицировали по сайту PacI и лигировали с линеаризованным вектором pGOAL19, несущим кассету с селективными генами *sacB* и *lacZ*. Полная схема создания генно-инженерной конструкции представлена в приложении Б.

Итоговой конструкцией (p2NIL pGOAL19 ΔF6) трансформировали подготовленные клетки микобактерий методом электропорации. Клоны, в которых произошло первое событие рекомбинации (созданный вектор был интегрирован в геном микобактерии) отбирали при помощи селекционной среды, содержащей антибиотики канамицин (50 мкг/мл) (Синтез, Россия) и гигромицин (20 мкг/мл) (Sigma-Aldrich, США), а также реагент 5-бромо-4-хлоро-3-индолил-β-D-галактопиранозид (X-gal, 0,4%) (Boehringer Mannheim, Германия). Для получения клонов, прошедших второе событие рекомбинации, отобранные колонии культивировали 48 часов в 5 мл жидкой питательной среды и затем высевали на агаризованную твердую среду, содержащую сахарозу (2%) и X-gal (0,4%). Отобранные колонии белого цвета проверяли на наличие гена F6 в геноме при помощи метода ПЦР-скрининга бактериальных колоний с использованием олигонуклеотидов F6-KO-check for и F6-KO-check rev. Для определения нуклеотидной последовательности полученные ПЦР-продукты секвенировали по методу Сэнгера (Евроген, Россия). Схематичное изображение с замены аллеля помощью конструкции р2NIL pGOAL19 Δ F6 и этапов селекции *M. smegmatis* приведено на Рисунке 20.

2.10 Создание комплементированного (ΔF6::F6) и контрольного (ΔF6::pMV306) штаммов *M. smegmatis* с делецией гена нкРНК F6

Для комплементации делеции гена нкРНК F6 нами был создан штамм, в геном которого была интегрирована плазмида pMV306hsp (Addgene, CША) с геном F6 под управлением микобактериального рибосомального промотора rrnB. Для этого мы сначала получили вектор pMV306rrnB, заменив область плазмиды pMV306hsp между рестрикционными сайтами Xbal и HindIII, которая содержала промотор hsp60, на амплифицированный методом ПЦР с помощью олигонуклеотиодов rrnB_200_xbal_for и rrnB_200_hindIII_rev промотор reнa *rrnB M. smegmatis*. Затем, на матрице генома *M. smegmatis*, методом ПЦР амплифицировали последовательность гена F6 с помощью олигонуклеотидов F6_hindIII _for/F6_hindIII _rev и лигировали в линеаризованный по рестрикционному сайту HindIII вектор pMV306rrnB. Правильность собранного фрагмента итоговой конструкции подтверждали секвенированием по методу Сэнгера (Евроген, Россия). В качестве контрольной плазмиды использовали вектор pMV306rrnB. Полная схема создания генно-инженерных конструкций данного этапа представлена в приложении B. Полученными конструкциями (pMV306-F6, pMV306rrnB) трансформировали подготовленные компетентные клетки *M. smegmatis* с делецией гена нкРНК F6 (ΔF6) методом электропорации.

2.11 Создание штаммов *M. smegmatis* для проверки взаимодействия нкРНК F6 и 5'-НТО мРНК *MSMEG_4640*

Для проверки предсказанного взаимодействия между малой РНК F6 и 5'-НТО мРНК *MSMEG_4640* мы создали репортерную систему, состоящую из двух векторов: интегративного (содержавшего репортерный ген *eGFP* соединенный с 5'-НТО *MSMEG_4640*) и автономного (обеспечивавшего транскрипцию нкРНК F6).

Встраиваемый вектор был разработан на основе плазмиды pMV306, для этого последовательность 5'-HTO *MSMEG_4640* амлифицировали с генома *M. smegmatis* с помощью олигонуклеотидов UTR4640-for/UTR4640-rev и лигировали в линеаризованную плазмиду pMV261-GFP (предоставлена Бони И.В., ИБХ РАН) по рестрикционным сайтам XbaI/BamHI. Полученную конструкцию, а также созданный ранее вектор pMV306rrnB расщепляли по рестрикционным сайтам HindIII, достраивали одноцепочечные участки ДНК и лигировали.

Для создания автономного вектора для транскрипции нкРНК F6, мы амплифицировали последовательность гена F6 вместе с промотором *rrnB* и терминатором с помощью олигонуклеотидов rrnB_200_xbaI_for и pMV306_term_xbaI_rev, используя в качестве матрицы созданную ранее плазмиду pMV306rrnB-F6. Итоговый фрагмент лигировали в линеаризованный вектор pAMYC (предоставлен Бони И.В., ИБХ РАН) по рестрикционному сайту XbaI.

Правильность собранных фрагментов обеих конструкций подтверждали секвенированием по методу Сэнгера (Евроген, Россия).

На основе векторов pAMYC-F6 и pMV306-MSMEG4640_{5'utr}-GFP мы создали две производных плазмиды pAMYC-F6mut и pMV306-MSMEG4640_{5'utr}mut-GFP, содержавших по три точечных мутации в изучаемой области взаимодействия. Процесс создания данных векторов описан в Главе 3.2.3. Внесенные мутации были проверены с помощью секвенирования по методу Сэнгера (Евроген, Россия). Полная схема создания векторов pAMYC-F6, pAMYC-F6mut, pMV306-MSMEG4640_{5'utr}-GFP и pMV306-MSMEG4640_{5'utr}mut-GFP приведена в Приложении Г.

Созданные конструкции, в комбинациях, соответствующих вариантам интактного, нарушенного и восстановленного взаимодействия изучаемых последовательностей, последовательно трансформировали в подготовленные компетентные клетки *M. smegmatis* штамма ΔF6 методом электропорации. При этом, сначала трансформировали интегративный вектор (pMV306-MSMEG4640₅, GFP или pMV306-MSMEG4640₅, coдержащий ген устойчивости к канамицину. Селекцию клонов производили на агаризованной питательной среде, содержащей канамицин (50 мг/мл). Интеграцию вектора в геном дополнительно проверяли методом ПЦР с колоний с помощью олигонуклеотидов pMV306-For и pMV306-Rev.

Компетентные клетки, которые были получены на основе культур отобранных колоний трансформировали вторым вектором репортерной системы (рАМҮС-F6 или рАМҮС-F6-mut), содержащим два гена устойчивости: к тетрациклину и к хлорамфениколу. Селекцию клонов производили на агаризованной питательной среде, содержащей антибиотики тетрациклин (25 мкг/мкл) (Sigma-Aldrich, США) и хлорамфеникол (35 мкг/мкл) (Sigma-Aldrich, США). Присутствие вектора в отобранных колониях дополнительно проверяли методом ПЦР колоний с помощью олигонуклеотидов рАМҮС-For и рАМҮС-Rev.

2.12 Создание гиперэкспрессирующих нкРНК MTS1338 и контрольных штаммов *M. smegmatis* (msm_pMV261_1338, msm_pMV261_E) и *M. tuberculosis* (mtb_pMV261_1338, mtb_pMV261_E)

Для создания вектора для гиперэкспрессии малой РНК MTS1338 мы выбрали классический микобактериальный автономный шаттл-вектор pMV261 (Addgene, CША). Последовательность промотора гена *rrnB M. smegmatis* амлифицировали методом ПЦР с помощью олигонуклеотидов rrnB_200_xbaI_for и rrnB_200_hindIII_rev лигировали в линеаризованный по рестрикционным сайтам XbaI и HindIII вектор pMV261. После этого амлифицировали ген малой PHK MTS1338 на матрице геномной ДНК *M. tuberculosis* H37Rv с помощью олигонуклеотидов MTS1338_HindIII_for и MTS1338_HindIII_rev, а затем лигировали в полученный на предыдущем этапе линеаризованный вектор pMV261rrnB по рестрикционному сайту HindIII. В качестве контрольной плазмиды, без гена MTS1338, использовали вектор pMV261rrnB. Правильность фрагментов созданных конструкций подтверждали с помощью секвенирования по методу Сэнгера (Евроген, Россия). Схема создания указанных векторов приведена в приложении Д.

Полученными конструкциями (pMV261-MTS1338, pMV261rrnB) трансформировали подготовленные компетентные клетки *M. tuberculosis* и *M. smegmatis* методом электропорации. Плазмида pMV261 содержит ген устойчивости к канамицину, поэтому селекцию клонов проводили на агаризованной питательной среде с добавлением канамицина (50 мкг/мл). Дополнительно присутствие плазмиды в отобранных клонах подтверждали методом ПЦР с колоний с помощью олигонуклеотидов pMV261_ins_F и pMV261_ins_R. Гиперэкспрессия MTS1338 в созданных штаммах msm_pMV261_1338 и mtb_pMV261_1338 была подтверждена методом количественной ПЦР с использованием олигонуклеотидов qPCR_MTS1338-г.

2.13 Создание транскрибирующего нкРНК MTS1338 и контрольного штаммов *M. smegmatis*, экспрессирующих GFP (msm_GFP_pMV261_1338, msm_GFP_pMV261_E)

Генно-инженерная конструкция для одновременной транскрипции нкРНК MTS1338 и экспрессии GFP в *M. smegmatis* была создана на основе вышеописанного вектора pMV261. Для этого последовательность гена *eGFP* вместе с промотором hsp60 и терминатором амплифицировали методом ПЦР с использованием олигонуклеотидов pMV261_ins_F и pMV261_term, используя в качестве матрицы плазмиду pMV261-GFP. Полученный фрагмент лигировали в созданный ранее линеаризованный вектор pMV261rrnB-MTS1338 или pMV261rrnB (контрольная конструкция) по рестрикционному сайту DraI. Правильность фрагментов созданных конструкций подтверждали с помощью секвенирования по методу Сэнгера (Евроген, Россия). Схема создания указанных векторов приведена в приложении Е.

Полученными конструкциями (pMV261-MTS1338-GFP, pMV261rrnB-GFP) трансформировали компетентные клетки *M. smegmatis*, селекцию проводили на твердой агаризованной среде с добавлением канамицина (50 мкг/мл). Экспрессию GFP в клеточных культурах отобранных клонов подтверждали с помощью конфокальной микроскопии.

2.14 Стрессовые воздействия in vitro

<u>М. smegmatis</u>: Холодовой стресс. Для экспериментов с холодовым стрессом культуру *M.* smegmatis выращивали до средне-логарифмической фазы ($O\Pi_{600} = 0,7$) в жидкой питательной среде при 37°C, а затем культивацию продолжали в орбитальном водяном шейкере Innova 3100 (New Brunswick Scientific, CША) при 15°C со скоростью 200 об/мин, периодически измеряя оптическую плотность культуры. Пробы объемом 10 мл забирали перед холодовым стрессом и через 2 ч, 5 ч и 24 ч после начала воздействия низких температур. Полученные культуры использовали для экстракции тотальной РНК.

<u>М. smegmatis</u>: Окислительный и кислотный стрессы. Культуру *М. smegmatis* выращивали до ранней логарифмической фазы роста ($O\Pi_{600} = 0,3$) в жидкой питательной среде Sauton с добавлением 0,05% Tween 80. Для симуляции окислительного и кислотного стрессов культуру инкубировали при 37°C в орбитальном шейкере (200 об/мин) с добавлением H₂O₂ (5 мкМ) (Merck, Германия) в течение 8 часов или HCl (5 мкМ) (Химмед, Россия) в течение 2 часов соответственно. Для контроля без стрессовых условий штаммы культивировали в такой же питательной среде в течение аналогичного времени.

<u>М. tuberculosis:</u> Окислительный, кислотный, нитрозативный стрессы. Для симуляции кислотного стресса культуру *M. tuberculosis* выращивали до средней логарифмической (ОП₆₀₀ = 1,0) или стационарной (ОП₆₀₀ = 2,0) фаз роста в зависимости от эксперимента, центрифугировали (4°C, 3000 g, 10 мин), промывали фосфатно-солевым буфером и разводили до ОП₆₀₀ = 0,2 (~10⁷ КОЕ/мл) в жидкой питательной среде Sauton, pH 5,5. Инкубацию продолжали на протяжении 48 часов.

Для симуляции нитрозативного или окислительного стрессов культуры бактерий той же оптической плотности (~10⁷ КОЕ/мл) инкубировали в среде Sauton (pH 7,0) в течение 48 часов с добавлением 0,5 мМ DETA NONOate (Sigma-Aldrich, США) или 10 мМ H₂O₂ соответственно.

Для контроля без стрессовых условий штаммы культивировали в среде Sauton в течение аналогичного времени.

2.15 Получение некультивируемых форм микобактерий

<u>М. smegmatis</u>. Культуры клеток *М. smegmatis*, выращенные в жидкой питательной среде инокулировали в 150 мл модифицированной среды без ионов калия [111] Hartman's-de Bont (содержит (на 1 литр): 11,8 г Na2HPO4·12H2O, 1,7 г лимонной кислоты, 20 г (NH4)2SO4, 30 мл глицерина и 10 мл раствора микроэлементов (содержат (на 1 литр): 1 г ЭДТА, 10 г MgCl2·6H2O, 0,1 г CaCl2·2H2O, 0,04 г CoCl2·6H2O, 0,1 г MnCl2·2H2O, 0,02 г Na2MoO4·2H2O, 0,2 г ZnSO4·7H2O, 0,02 г CuSO4·5H2O, и 0,5 г FeSO4·7H2O)). После добавления и перемешивания всех компонентов, pH среды доводили до 7,0, и добавляли 0,05% Tween 80 и 0,5% бычьего сывороточного альбумина (Cohn-Analog, CША). В случае плазмид-содержащих штаммов (Δ F6::F6, Δ F6::pMV306), в среду также добавляли селективный антибиотик канамицин (50 мг/мл). Культуры инкубировали при 37°C на орбитальном шейкере (200 об/мин).

<u>М. tuberculosis</u>. Культуру клеток *М. tuberculosis* штамма H37Rv, выращенную до средней стационарной фазы роста ($O\Pi_{600} = 4,0$) инокулировали (5×10^5 клеток/мл) в среду Sauton с дефицитом ионов калия (содержащую 8,9 г Na2HPO4 · 12 H2O вместо 0,5 г KH2PO4) и выращивали при 37°C при постоянном покачивании (200 об/мин). После 14–15 дней культивирования добавляли 5 мкг/мл рифампицина (Sigma-Aldrich, CША) для устранения культивируемых бактерий и получения популяции некультивируемых клеток, которые при высеве на агаризованную питательную среду не образуют колоний.

2.16 Реактивация некультивируемых форм микобактерий

<u>*M. smegmatis*</u>. Реактивацию и оценку наиболее вероятного числа (НВЧ) живых бактерий *M. smegmatis* проводили в 48-луночных планшетах (Corning Inc., США), которые содержали 450 мкл жидкой питательной среды Sauton и 10^5 - 10^6 клеток *Micrococcus luteus* в экспоненциальной фазе роста в соответствии с протоколом описанным ранее [111]. Бактерии *M. luteus* не препятствовали оценке роста *M. smegmatis*, т.к. они не делятся в питательной среде Sauton. Серийно (десятикратно) разведенные пробы культуры *M. smegmatis* в объеме 50 мкл добавляли в каждую лунку и инкубировали при 37°С с покачиванием (100 об/мин) на протяжении 7 дней. Лунки с видимым ростом бактерий считали положительными, а НВЧ определяли с использованием стандартных таблиц [112].

<u>М. tuberculosis</u>. Некультивируемые клетки *М. tuberculosis* осаждали центрифугированием (4°С, 3000 g, 20 мин), промывали дважды стерильной питательной средой Sauton и разводили в 5 раз от исходного объема культуры «средой для реактивации», которая представляет собой стандартную среду Sauton, содержащую 0,6% глицерина, ростовую добавку альбумин-декстроза-каталаза (10%) и Tween 80 (0,05%) [113], после чего добавляли равный объем отобранного ранее супернатанта. Бактериальные культуры инкубировали с перемешиванием (150 об/мин) при 37°С и постоянном перемешивании и собирали в анализируемые временные точки для подсчета колониеобразующих единиц (КОЕ) и включения радиоактивного урацила. В одном из вариантов эксперимента протокол реактивации проводили с добавлением 5 мкг/мл рифампицина.

2.17 Инфекция

<u>М. tuberculosis in vivo, инфекция мышей</u>. Мышей линий C57BL/6Y (B6) содержали в стандартных условиях в виварии Центрального научно-исследовательского института туберкулеза в соответствии с рекомендациями Министерства здравоохранения Российской Федерации и под гарантией № A5502-11 Управления защиты лабораторных животных Национального института здравоохранения (NIH). Для экспериментов использовали самок мышей возрастом 2,5–3 месяца. Все экспериментальные процедуры были одобрены комитетом биоэтики ЦНИИТ.

Перед подготовкой к заражению культуру микобактерий выращивали до средней логарифмической стадии роста (ОП₆₀₀ = 0,8–1,0) в жидкой питательной среде Дюбо (BD Bioscience, США) с добавлением 0,5% обезжиренного бычьего сывороточного альбумина

(Calbiochem-Behring Corp., США) при 37°С и постоянном помешивании (200 об/мин). Полученную культуру трижды центрифугировали (4°С, 3000 g, 20 мин) и промывали фосфатносолевым буфером с добавлением 0,2 мМ EDTA и 0,025% Tween 80. Культуры фильтровали через мембранные фильтры с порами диаметром 5 мкм (Millipore, США). Отфильтрованную культуру *M. tuberculosis* хранили при 4°С.

Для заражения мышей культуру микобактерий ресуспендировали в стерильном фосфатносолевом буфере. Заражение мышей осуществляли через дыхательные пути (~100 КОЕ на мышь) с помощью системы ингаляционной доставки аэрозоля (Glas-Col, CША). Размер дозы подтверждали с помощью предварительных экспериментов, в ходе которых на агаризованную среду Дюбо высевали серийные двукратные разведения 2 мл гомогената из легких мышей обеих линий, полученные после двухчасовой инфекции; через 3 недели инкубации при 37°С производили подсчет КОЕ.

M. tuberculosis ex vivo, инфекция перитонеальных макрофагов. Для получения перитонеальных макрофагов, мышам линии В6 внутрибрюшинно вкалывали 3% раствор пептона (Sigma-Aldrich, США) в солевом буфере. Через 5 дней клетки перитонеального экссудата элюировали из брюшной полости с помощью фосфатно-солевого буфера, не содержащего ионов Ca²⁺ и Mg²⁺, с добавлением 2% эмбриональной бычьей сыворотки (Gibco, США) и 10 Ед/мл гепарина (Sigma-Aldrich, CША). Затем клетки дважды промывали фосфатно-солевым буфером и ресуспендировали в питательной среде RPMI-1640 (Gibco, CША), которая содержала 5% фетальной бычьей сыворотки, 10 мМ HEPES (Sigma-Aldrich, США) и 2 мМ L-глутамин (Sigma-Aldrich, США). Содержание клеток с позитивной реакцией на неспецифическую эстеразу в перитонеальном экссудате превышало 85%. Экссудат высевали на 90 мм чашки Петри (Corning Inc., США) в концентрации 10^7 клеток на чашку в 10 мл питательной среды RPMI-1640, которая содержала 5% эмбриональной бычьей сыворотки, 10 мМ HEPES и 2 мМ L-глутамин для получения монослоя макрофагов. Клетки инкубировали в течение 2 часов при 37°C и 5% CO₂ для адгезии, после чего добавляли микобактерии, ресуспендированные в 10 мл питательной среды RPMI-1640 с множественностью инфекции (МИ) 20, 15 и 5 для инкубации в течение 2, 4 и 24 часов соответственно. Культуры микобактерий без макрофагов использовали в качестве контроля.

Для экспериментов с активацией макрофагов, монослой обрабатывали мышиным IFN-ү (100 Ед/мл) (Sigma-Aldrich, США) за 14 часов до добавления микобактерий. Для блокировки iNOS добавляли L-NIL (Sigma-Aldrich, США) в финальной концентрации 100 мкМ за 1 час до обработки IFN-ү.

<u>M. smegmatis ex vivo</u>, инфекция макрофагов RAW 264.7. Клеточную линию RAW 264.7 (TIB-71TM, ATCC[®], США) культивировали в питательной среде RPMI-1640 с добавлением 10%

55

эмбриональной бычьей сыворотки при 37°C в инкубаторе с 5% CO₂ в течение 24 часов до достижения степени конфлюэнтности 70-80%.

Клеточную культуру *M. smegmatis*, выращенную до средней логарифмической фазы роста (ОП₆₀₀ = 0,8), промывали в фосфатно-солевом буфере, ресуспендировали в RPMI-1640 с добавлением 10% эмбриональной бычьей сыворотки и добавляли к макрофагам с MИ 10:1. Чтобы использовать равное количество контрольных и транскрибирующих MTS1338 бактерий при инфицировании макрофагов, бактериальные клетки подсчитывали методом оценки числа колониеобразующих единиц (КОЕ).

Клетки RAW264.7, выращенные в 24-луночных планшетах (Corning Inc., США) по 5×10^4 клеток в лунке, инфицировали штаммами *M. smegmatis*. Через 3 часа клетки промывали фосфатно-солевым буфером пять раз, чтобы убрать нефагоцитированные бактерии, и выращивали еще 21 час. После этого культуру промывали фосфатно-солевым буфером и лизировали в охлажденном растворе 0,01% SDS (Sigma-Aldrich, США). Аликвоты этой суспензии серийно (десятикратно) разводили в растворе деионизированной воды с добавлением 0,05% Tween-80, и по 5 мкл от каждого разбавления наносили на агаризованную твердую среду LB в трипликате; число колоний подсчитывали через 72 часа и выражали как КОЕ/мл.

2.18 Оценка выживаемости микобактерий

<u>М. smegmatis</u>. Бактериальную суспензию разводили серийно в десятикратном разбавлении в жидкой питательной среде, после чего 100 мкл каждого разведения вносили на агаризованную питательную среду. Затем инкубировали при 37°C в течение 3 дней и проводили оценку числа колониеобразующих единиц (КОЕ).

<u>М. tuberculosis</u>. Для оценки КОЕ *М. tuberculosis* после инфекции лёгкие отдельных мышей гомогенизировали в 2 мл стерильного солевого раствора. Десятикратные серийные разведения высевали на чашки с агаризованной средой Дюбо. Оценку проводили после инкубации при 37°C в течение 20-22 дней.

2.19 Измерение уровня включения радиоактивно меченного урацила

Оценку выживания *M. tuberculosis* в условиях действия стрессов *in vitro* проводили через 24 и 48 часов воздействия стресса путем измерения включения ³Н-урациловой метки. Для этого

к 1 мл культуры добавляли 2 мкл 5,6-[³H]-урацила (2 мкКи) (Изотоп, Россия) и инкубировали при 37°С и постоянном покачивании (200 об/мин) 20 часов. После этого 200 мкл культуры добавляли к 3 мл 7% охлажденной трихлоруксусной кислоты (Химмед, Россия), инкубировали 15 минут при 0°С и фильтровали через микробиологический фильтр (Whatman, США). Осажденные клетки последовательно промывали 3 мл 7% трихлоруксусной кислоты и 3 мл 86% этанола, затем фильтры помещали в 10 мл сцинтилляционной смеси Ultima Gold (PerkinElmer, США). Скорость включения урацила (СРМ) определяли с помощью жидкостного сцинтилляционного счетчика LS analyser (Beckman Coulter, США).

2.20 Нозерн-блоттинг

Тотальную бактериальную РНК (2 мкг) разделяли в 10% денатурирующем полиакриламидном геле в трис-боратном буфере, переносили на нейлоновую мембрану Hybond[®]-N+ Membranes (Cytiva, Великобритания) капиллярным методом и запекали с помощью системы для сушки при 70°C в течение 2 часов. Затем мембрану инкубировали 12-18 часов при 42°C в гибридизационном буфере ULTRAhybTM-Oligo (Thermo Fisher Scientific, CША) вместе с радиоактивно меченым на 5'-конце олигонуклеотидом (15 пмоль), комплементарным детектируемой РНК. Метку олигонуклеотида производили с использованием 10 мкКи [γ^{32} P]-АТФ (Изотоп, Россия) и Т4 полинуклеотидкиназы (Thermo Fisher Scientific, CША). После гибридизации мембрану трижды промывали в хлоридно-содовом цитратном буфере (SSC) (0,15 M NaCl, 15 мМ цитрат натрия, pH 7,0), содержащем 0,1% SDS; при этом, каждую следующую промывку совершали, используя более разведенный SSC буфер (2x SSC, 1x SSC, 0,5x SSC). Затем мембрану экспонировали перед рентгеновской плёнкой Retina (Carestream Health, CША) для детекции радиоактивности.

2.21 Вестерн-блоттинг

Осажденную клеточную культуру лизировали с помощью 0,1 мм циркониевых шариков и гомогенизатора BeadBeater, полученный лизат инкубировали 5 мин при 95°C в SDS буфере (100 мМ Трис-HCl, pH 6,8, 4% SDS, 0,2% бромфеноловый синий, 20% глицерин, 200 мМ DTT). Концентрацию белков измеряли по методу Брэдфорда. Равные количества белков (5 мкг) разделяли в 12% полиакриламидном геле с добавлением 0,1% SDS с помощью системы Mini

Тrans-Blot[®] Cel (Bio-Rad, CША). После этого белки переносили на поливинилиденфторидную мембрану Amersham[™] Hybond P[®] (Cytiva, Великобритания) с помощью камеры для электроблоттинга Trans-Blot SD Semi-Dry Transfer Cell (Bio-Rad, CША). После переноса мембрану блокировали 5% раствором обезжиренного сухого молока (Bio-Rad, CША) и инкубировали с раствором первичных антител, специфичных к консервативному домену Rpf (реактив предоставлен Салиной Е.Г., ИНБИ РАН). Затем мембрану инкубировали с раствором вгоричных антител (Cell Signaling Technology, CША), конъюгированных с пероксидазой хрена и специфичных к первичным антителам. Детекцию сигнала осуществляли с помощью коммерческого набора Clarity Western ECL (Bio-Rad, CША) в гельдокументирующей системе ChemiDoc Touch imager station (Bio-Rad, CША).

2.22 Конфокальная микроскопия

Макрофаги линии RAW 264.7, культивированные в среде RPMI-1640 с добавлением 10% эмбриональной бычьей сыворотки, высаживали в среде без добавления антибиотика на покровные стекла 18×18 мм MenzelTM (Thermo Fisher Scientific, США), помещенные в 6луночные культуральные планшеты (Corning Inc., CША). Через 24 часа клетки (5 \times 10⁴ клеток/стекло) инфицировали штаммом msm GFP pMV261 1338 или msm GFP pMV261 E (контрольный штамм) с МИ 10:1, и инкубировали 3 часа. В экспериментах с использованием реактива LysoTracker Red DND-99 (Thermo Fisher Scientific, США) краситель добавляли за 1 час до завершения инфицирования в конечной концентрации 50 нМ. Через 3 часа среду удаляли, клетки промывали трижды фосфатно-солевым буфером, фиксировали в 1% параформальдегиде (Химмед, Россия) в течение 10 минут и снова трижды промывали фосфатно-солевым буфером. Для окрашивания компартментов, ассоциированных с гликопротеином лизосомальной мембраны LAMP-1, клетки инкубировали с первичными антителами к LAMP-1 (sc-20011, Santa Cruz Biotechnology, США), разведёнными в соотношении 1:80 в фосфатном буфере с содержанием 0,1% реактива Triton[™] X-100 (Sigma-Aldrich, США), на протяжении ночи при 4°С. Монослои клеток промывали три раза по 10 минут в том же буфере, инкубировали с Alexa Fluor 568конъюгированными козьими антителами к мышиным IgG (H + L) (A-21422, Thermo Fisher Scientific, США) разведенными в соотношении 1:500 в течение 1 часа при комнатной температуре и промывали, трижды. Ядра клеток окрашивали при помощи раствора красителя 5 мкг/мл Hoechst 33342 (Thermo Fisher Scientific, США) в течение 5 минут. Детекцию микобактерий осуществляли по GFP-флуоресценции при длине волны 488 нм, в то время как фагосомы (окрашивание

LysoTracker Red DND-99 и LAMP-1) визуализировали при длине волны 543 нм, а ядра клеток при длине волны 405 нм с использованием конфокального микроскопа Eclipse TE2000 (Nikon, Япония). Пропорцию фагосом с GFP-меткой, колокализующихся с LAMP-1 и LysoTracker Red DND-99, рассчитывали путем анализа 50 фагосом в 4 случайных полях для каждого образца. Всего было проведено три независимых биологических эксперимента.

2.23 Количественная оценка флуоресценции GFP

Культуры штаммов *М. smegmatis*, трансформированные генно-инженерными конструкциями для экспрессии GFP, растили до средней логарифмической фазы роста (ОП₆₀₀ = 0,8), центрифугировали (4°С, 4000 об/мин, 10 мин), дважды промывали фосфатно-солевым буфером, добавляли 0,1 мм циркониевые шарики и лизировали при помощи гомогенизатора BeadBeater. Лизаты центрифугировали (4°С, 4000 об/мин, 5 мин) и 200 мкл супернатанта переносили в 96-луночный планшет (Corning Inc., США). Флуоресценцию GFP измеряли при помощи флуориметрического анализатора Tecan[™] GENios[®] Microplate (Tecan, Швейцария) с длинами волны возбуждения и эмиссии 488 и 510 нм соответственно. Статистические метрики определяли по трем биологическим репликам.

2.24 Измерение концентрации белков по методу Бредфорда

Образцы белка и стандартные растворы бычьего сывороточного альбумина с различной концентрацией от 0,125 до 1 мг/мл разводили в фосфатно-солевом буфере до финального объема 1 мл. Затем к каждому образцу и стандартному раствору добавляли 5 мл реагента Брэдфорда (Bio-Rad, США). После инкубации в темноте при комнатной температуре в течение 10 минут, 1 мл раствора переносили в стерильные кюветы и проводили фотометрическое измерение поглощения при длине волны 595 нм с использованием спектрофотометра UNICO 2100 (UNICO, США).

Калибровочный график строили на основе данных измерений стандартных растворов бычьего сывороточного альбумина. Концентрацию белка в образцах определяли путем сравнения их поглощения со стандартным графиком. Все измерения проводили в трехкратных повторениях.

2.25 Определение уровня цитокинов

Макрофаги линии RAW264.7 культивировали в 6-луночных планшетах (Corning Inc., США) до плотности 7×10^5 клеток в лунке в питательной среде RPMI-1640 с добавлением 10% эмбриональной бычьей сыворотки, инфицировали штаммами *M. smegmatis* с MU 10:1 в течение 3 часов, затем промывали пять раз фосфатно-солевым буфером и культивировали в течение 4 и 24 часов. После этого к культурам добавляли 1 мл реагента ExtractRNA (Евроген, Россия) и проводили экстракцию PHK по фенол-хлороформному методу, описанному в разделе 2,3. Синтез кДНК и количественную OT-ПЦР выполняли в соответствии с протоколом, описанным в разделе 2,7.

2.26 Пробоподготовка библиотек для массового параллельного секвенирования и секвенирование

На первом этапе проводили деплецию рРНК. В эксперименте с изучением влияния холодового стресса на транскриптом *M. smegmatis* этот шаг выполняли при помощи коммерческого набора NEBNext[®] rRNA Depletion Kit (Bacteria) (NEB, CША). Для эксперимента по исследованию транскриптома мутантного штамма M. smegmatis по гену нкРНК F6 использовали коммерческий набор Ribo-Zero rRNA Removal Kit (Bacteria) (Illumina, США). В эксперименте по изучению влияния стрессоров на транскриптом двух штаммов M. tuberculosis (штаммы mtb pMV261 1338, mtb pMV261 E) деплецию проводили по протоколу, описанному в статье Huang и соавторов [114], с использованием РНКазы Н. Для этого методом ПЦР с использованием пар олигонуклеотидов (16S F/16S R и 23S F/23S R), один из каждой пары которых был фосфорилирован, амплифицировали гены 16S и 23S PHK M. tuberculosis H37Rv. Амплифицированные фрагменты инкубировали с экзонуклеазой фага лямбда (NEB, CША) для гидролиза одной из цепей ДНК. Полученные ампликоны смешивали с пробами РНК в количественном соотношении 10:1 (Ампликоны:РНК) и производили гибридизацию путем нагрева до 95°C с последующим охлаждением до 45°C в течение 10 минут. После этого к пробам добавляли РНКазу Н (Thermo Fisher Scientific, США) и инкубировали в соответствии с протоколом. Полученные пробы повторно обрабатывали ДНКазой TurboDNase для удаления ДНК.

Деплетированные РНК-пробы использовали для создания библиотек при помощи набора Ultra II Directional RNA Library Prep Kit (NEB, CША) в соответствии с протоколом производителя. В случае секвенирования короткой фракции РНК, шаг фрагментирования РНК пропускали.

Секвенирование проводили в трипликатах на платформе Illumina HiSeq2500 или Illumina NovaSeq 6000 (Евроген, Россия) в форме двухконцевых прочтений длиной 100 и 150 нуклеотидов соответственно.

2.27 Анализ данных массового параллельного секвенирования

На первом этапе проводили проверку качества полученных прочтений при помощи программы FastQC (Babraham Institute, Великобритания). После этого, при помощи программы Bowtie2 [115] прочтения картировали на референсный геном изучаемого организма: в случае М. smegmatis был использован геном NC 008596,1, а в случае M. tuberculosis - AL123456,3; последовательности генома были получены с веб-сайта базы данных Национального центра биотехнологической информации (NCBI, https://www.ncbi.nlm.nih.gov/). Картирование проводили с использованием настроек «--local» и «--dovetail», которые позволяют выполнять локальное выравнивание и допускают «перекрывание» прочтений одной пары на референсном геноме. Подсчет картированных прочтений в рамках границ генов осуществляли с использованием программы featureCounts из пакета программ Subread [116], учитывая только однозначно картированные нехимерные фрагменты. Геномные аннотации для *M. tuberculosis* и *M.* smegmatis были получены с веб-сайта базы данных Mycobrowser (https://mycobrowser.epfl.ch/) [117].

Анализ дифференциальной экспрессии проводили при помощи пакетов программ DESeq2 [118] и edgeR [119]. Критерии для определения дифференциальной экспрессии генов подбирались индивидуально для каждого анализа. При этом скорректированный уровень рзначимости всегда составлял менее 0,1, а изменение экспрессии (FC, fold change) достигало как минимум двукратного значения.

Анализ обогащения генов по функциональным категориям выполняли с помощью онлайнплатформы DAVID [120].

Кластеризацию паттернов экспрессии генов во времени для анализа транскриптома *M. smegmatis* в условиях холодового стресса проводили при помощи пакета программ TCseq [121]. В данном виде анализа были использованы только те гены, которые были идентифицированы как дифференциально экспрессируемые хотя бы в одном из 5 проведенных сравнений.

2.28 Депонирование данных массового параллельного секвенирования

Все данные, полученные в результате массового параллельного секвенирования были загружены в репозиторий данных секвенирования Gene Expression Omnibus (GEO, <u>https://www.ncbi.nlm.nih.gov/geo/</u>) под идентификационными номерами GSE232901 (анализ транскриптома *M. smegmatis* в условиях холодового шока), GSE149173 (анализ транскриптома *Штамма M. smegmatis*, мутантного по гену нкРНК F6) и GSE218354 (влияние нкРНК MTS1338 на транскриптом *M. tuberculosis* при действии различных стрессоров).

2.29 Аннотация некодирующих РНК M. smegmatis

Идентификацию генов предполагаемых нкРНК на основе данных, полученных в результате секвенирования фракции коротких РНК, проводили при помощи программы Rockhopper [122] со стандартными настройками. После детекции генов нкРНК для пробы каждой исследуемой временной точки (H0, H2, H5 и H24), результаты объединили в общую аннотацию, а гены-дубликаты удалили. Наименование аннотированных нкРНК производили в соответствии с шаблоном и рекомендациями, предложенными для микобактерий в статье Lamichhane и соавторов [123]. Для оценки и сравнения экспрессии генов нкРНК между пробами, данные, полученные для всего транскриптома, были повторно проанализированы по описанному выше алгоритму с использованием новой аннотации генов нкРНК.

2.30 Пробоподготовка и исследование протеома

Культуры *M. smegmatis* выращивали в жидкой питательной среде до стационарной фазы роста (ОП₆₀₀ = 2,0), после чего центрифугировали (4°С, 3000 g, 10 мин) и ресуспендировали в лизирующем буфере (100 мМ Tris-HCl, pH 7,5, 4% SDS, 10 мМ DTT, коктейль протеазных ингибиторов (Sigma-Aldrich, США)). Затем добавляли 0,1 мм циркониевые шарики и лизировали с помощью гомогенизатора Bead Beater. Полученный лизат центрифугировали (10 мин, 12000 об/мин, 4°С), фильтровали через фильтр с диаметром пор 20 мкм (Millipore, США) и инкубировали при 85°С в течение 10 мин. Концентрацию белка оценивали с помощью коммерческого набора microBCATM (Thermo Fisher Scientific, США). Аликвоты, содержащие 50 мг белка, разводили до 1 мг/мл лизирующим буфером, и добавляли Трис (2-карбоксиэтил) фосфин гидрохлорид (TCEP-HCl) и хлорацетамид (CAA) в конечных концентрациях 10 и 20 мМ для восстановления и алкилирования цистеина соответственно, с последующей инкубацией при 80°C в течение 10 мин. Затем белки осаждали пятью объемами ацетона при –20°C в течение 16 часов; осадок дважды промывали ацетоном, ресуспендировали в 50 мл раствора 100 мМ Tris pH 8,5, 1% SDS с помощью соникации и обрабатывали трипсином (Promega, CША), добавленным в соотношении 1/100 (трипсин к белку) в течение 2 часов при 37°C. После этого добавляли вторую порцию трипсина в том же соотношении и инкубировали образец в течение ночи при 37°C. Протеолиз останавливали 1% раствором трифторуксусной кислоты, а осажденный SDS удаляли после центрифугирования.

Пробоподготовку секретированных белков, выделяли из супернатантов жидких культур, проводили по аналогичному протоколу. Супернатанты дважды фильтровали через фильтр с диаметром пор 0,2 мкм (Millipore, США), а затем белки осаждали 10% растворе трифторуксусной кислоты в ацетоне в присутствии 0,015% SDS.

Масс-спектрометрический анализ и обработка результатов были выполнены в совместно с Зиганшиным Р.Х. (ИБХ РАН) на системе HPLC Ultimate 3000 RSLCnano (Thermo Fisher Scientific, США), подключенной к масс-спектрометру Q Exactive Plus (Thermo Fisher Scientific, США). Данные масс-спектрометрического протеомного анализа были размещены в консорциуме ProteomeXchange через партнерский репозиторий PRIDE [124] под идентификационным номером PXD019813.

2.31 Предсказание мишеней бактериальных нкРНК

Для предсказания потенциальных мишеней бактериальных нкРНК использовали программы CopraRNA [125] и TargetRNA3 [126]. Последовательности интересующих нкРНК были получены из экспериментальных исследований и приведены в соответствие с требованиями указанных программ. При работе с программой CopraRNA последовательности загружали на официальный веб-сайт (<u>https://rna.informatik.uni-freiburg.de/CopraRNA/Input.jsp</u>) и проводили анализ, используя стандартные настройки.

Аналогично, для анализа в TargetRNA3 последовательности загружали на соответствующий веб-сайт (https://cs.wellesley.edu/~btjaden/TargetRNA3/), также с применением стандартных параметров.

2.32 Статистический анализ

Статистический анализ проводили с помощью программы Microsoft office Microsoft Excel Office 365 и GraphPad Prism 8,0 (GraphPad Software Inc., США). Данные представлены как среднее (mean) +- стандартное отклонение (SD). Для сравнения данных, распределение которых соответствует нормальному, применяли t-тест Стьюдента. Для данных, распределение которых не соответствует нормальному, использовали тест Манна-Уитни. Разницу считали статистически значимой при значении р <= 0,05. Для каждого эксперимента проводили по крайней мере 3 независимых репликата.

2.33 Визуализация

Визуализацию картирования РНК-секвенирования проводили с помощью геномного браузера IGV [127]; подсчет глубины покрытия осуществляли с помощью пакета программ deepTools2 [128]. Диаграммы Volcano для дифференциально экспрессирующихся генов были построены с помощью пакета программ EnhancedVolcano [129].

Вторичные структуры РНК были смоделированы с помощью онлайн-сервиса RNAfold [130] и визуализированы с помощью приложения VARNA [131].

Визуализацию всех нуклеотидных последовательностей ДНК выполняли с использованием геномного браузера SnapGene Viewer (https://www.snapgene.com/).

Глава 3. Результаты и обсуждение

3.1 Полнотранскриптомное исследование M. smegmatis в условиях холодового стресса

Холодовой стресс, определяемый как значительное падение температуры окружающей среды по сравнению с оптимальной температурой роста бактерий, представляет собой первостепенный вызов естественной среды для выживания бактерий. Как для непатогенных, так и патогенных микобактерий холодовой стресс представляет собой важную переменную окружающей среды. Он способен значительно замедлить их метаболическую активность, нормальное функционирование белков и всех клеточных процессов и даже привести к гибели клеток. Также, понижение температуры может вызывать существенные изменения текучести и функции бактериальных мембран, нарушать синтез белка и замедлять ферментативные реакции, необходимые для выживания клеток.

Однако наше понимание адаптации микобактерий к холодовому стрессу, особенно на уровне транскриптома, остается фрагментарным. Учитывая роль транскриптомных изменений в управлении бактериальным ответом на различные стрессы, исследование транскриптома микобактерий при холодовом стрессе может дать ключевое представление об их стратегии выживания в этих условиях. Необходимо также отметить, что, несмотря на внушительный объем информации об участии нкРНК в регуляции ответа бактерии на различные стрессы, практически ничего не известно о роли этих молекул в адаптации к низким температурам.

Эксперименты в этой главе направлены на изучение некодирующего транскриптома модельного организма *M. smegmatis* в ответе на холодовой стресс.

3.1.1 Акклимационная фаза *M. smegmatis* длится до 24 часов

Для поиска наиболее оптимальных временных точек исследования транскриптомной адаптации M. smegmatis к низким температурам, нами была проанализирована кривая роста M. smegmatis в жидкой питательной среде при 15 °C (Рисунок 12). Низкие температуры негативно влияют на клеточную пролиферацию, что приводит к стагнации роста клеточной культуры в первые несколько часов воздействия стресса. Первый статистически значимый прирост оптической плотности наблюдается через 24 часа после начала воздействия холодового стресса,

что коррелирует с описанными ранее данными [132]. После 24 часов воздействия низких температур было отмечено планомерное увеличение оптической плотности, что маркирует завершение адаптации *M. smegmatis* к новым условиям.

Рисунок 12 — Кривая роста *M. smegmatis* в условиях низких температур (15 °C); звездочками обозначено статистически значимое (*p < 0.05, **p < 0.01, ***p < 0.001) приращение оптической плотности клеточной культуры относительно начальной точки (0 часов)

На основе этих данных для профилирования транскриптома были выбраны 4 временных точки: 0 часов (H0, начальные условия до воздействия стресса), 2 часа и 5 часов (H2 и H5, акклимационная фаза, соответствующая начальному периоду адаптации) и 24 часа (H24, фаза адаптированного состояния или постадаптационная стадия, в которой все долгосрочные адаптации уже произошли и клеточный рост возобновлен).

3.1.2 Транскриптомный адаптация *M. smegmatis* к условиям низких температур протекает в две стадии

Для того, чтобы раскрыть сущность происходящих адаптаций, нами было проведено полнотранскриптомное профилирование культур *M. smegmatis*, собранных в выбранных

временных точках. Анализ главных компонент полученных данных (Рисунок 13) демонстрирует наличие трех ярко выраженных кластеров, соответствующих адаптационным стадиям: начальные условия (до воздействия стресса, H0), акклимационная фаза (временные точки H2 и H5) и фаза адаптированного состояния (временная точка H24).

Рисунок 13 – Диаграмма двух главных компонент данных РНК-секвенирования проб *M*. *smegmatis*, инкубированных в условиях низких температур различное время

Мы провели анализ дифференциально экспрессированных генов в 3 возможных сравнениях относительно первоначальных условий (H2, H5 и H24 против H0), а также в динамике (H2 против H0, H5 против H2, H24 против H5). Было выявлено, что наиболее масштабные транскриптомные изменения происходят в ранние часы воздействия холодового стресса: за первые два часа инкубации при низких температурах изменилась экспрессия более чем в 2 раза почти полутора тысяч белок-кодирующих генов, что составляет примерно четверть от всех генов *M. smegmatis*. Диаграммы Volcano, демонстрирующие масштаб транскриптомных изменений в изученных сравнениях, приведены на Рисунке 14. Полные списки статистически достоверно дифференцированных генов для каждого сравнения размещены в онлайн-репозитории (https://www.mdpi.com/article/10.3390/ijms241612706/s1). Результаты анализа дифференциальной экспрессии, полученные на основе данных транскриптомного профилирования были

подтверждены с помощью метода количественной ПЦР нескольких случайно выбранных генов в независимом эксперименте (Приложение Ж).

Рисунок 14 – Диаграммы Volcano, отображающие дифференциальную экспрессию генов в каждом из проведенных сравнений (|Log₂FC| > 1,0, P_{adj} <= 0,01); гены, статистически достоверно повышающие свою экспрессию, отмечены красным цветом; понижающие - зеленым

На основе полученных данных был также проведен кластерный анализ данных секвенирования во времени с помощью пакета TCseq. Данный вид анализа позволяет выявлять основные паттерны экспрессии генов во времени, что помогает предположить их функциональную роль. Результаты кластеризации, полученные в результате этого анализа, размещены в онлайн-репозитории (https://www.mdpi.com/article/10.3390/ijms241612706/s1). Всего было выделено 6 паттернов экспрессии генов (Рисунок 15), форма каждого из которых отражает активность конкретного кластера генов в адаптации к низким температурам в определенный момент времени.

Рисунок 15 – Основные паттерны экспрессии генов во времени, полученные на основе кластерного анализа данных секвенирования; на оси ординат отображены нормализованные значения экспрессии в виде RPKM (Reads Per Kilobase Million); цвет обозначает степень, с которой каждый ген принадлежит кластеру (membership); значения n в правом нижнем углу обозначают количество генов в кластере

Экспрессия генов, принадлежащих к кластерам 1 и 3 резко возрастает в первые часы действия низких температур (2 и 5 часов) и снижается к 24 часам, что указывает на их участие в острой фазе ответа *M. smegmatis* на холодовой стресс. Им зеркальны кластеры 2 и 4, для которых характерно резкое падение экспрессии на коротких сроках, но возобновление к 24 часам. Наконец, кластер 5 охватывает гены, чья экспрессия только снижается со временем в условиях низких температур, и кластер 6, включающий гены, экспрессия которых начинает повышаться после начала действия стресса и максимальна к 24 часам: оба эти кластера охватывают долгосрочные изменения.

Таким образом, форма выявленных паттернов, подтверждает данные анализа главных компонент, показывая, что транскриптомная адаптация к холодовому стрессу протекает в 2 стадии. Начальная стадия включает в себя быстрые процессы, имеющие решающее значение для поддержания и выживания клеток во время непосредственного воздействия низких температур. Последующая стадия включает в себя долгосрочные адаптивные процессы, которые в конечном

69

итоге позволяют клетке повторно инициировать цикл деления и возобновить рост даже в условиях продолжающегося холодового стресса. Вместе эти две стадии представляют собой всеобъемлющую стратегию бактерии, направленную на выживание и развитие при низких температурах.

3.1.3 Адаптация *M. smegmatis* к низким температурам приводит к глобальным транскриптомным измененениям

Многие адаптационные процессы к холодовому стрессу уже были достаточно подробно описаны для таких бактерий, как например *E. coli* и *B. subtilis*, однако касательно микобактерий информация по этому вопросу остаётся крайне ограниченной. В результате анализа транскриптомных изменений, происходящий в *M. smegmatis* при воздействии низких температур, нами были выявлены основные функциональные блоки, отвечающие за адаптацию. При этом были обнаружены как сходства с ранее описанными процессами (синтез осмопротектантов, изменение состава клеточной мембраны), так и любопытные отличия (небольшие изменения в экспрессии основные функциональные изменения происходящие с *M. smegmatis* при адаптации к холодовому стрессу и выделено несколько белков-представителей для каждой категории:

- <u>РНК-шапероны</u>. Считаются одними из самых важных участников ответа на холодовой стресс и преимущественно участвуют в стабилизации РНК структур, препятствуя формированию вторичных структур. Белки, содержащие домен холодового шока (Cold shock proteins, CSP), традиционно представляют наиболее охарактеризованное семейство белков, участвующих в адаптации к низким температурам. Из двух аннотированных CSP белков *M. smegmatis* один не экспрессируется в условиях холодового стресса вообще (CspB), а другой (CspA) демонстрирует лишь незначительное (в 2 раза) увеличение экспрессии (тогда как у *E. coli* его экспрессия возрастает более чем в 25 раз). Среди генов РНК-шаперонов, белковые продукты которых потенциально могут принимать участие в адаптации *M. smegmatis* к низким температурам, можно выделить *MSMEG_1930* и *MSMEG 1540*.
- <u>Осмопротекторы</u>. Стабилизируют клеточные мембраны и белковые комплексы, предотвращая их деформацию и кристаллизацию при низких температурах. Мы показали, что главным осмопротектором *M. smegmatis* является эктоин, все гены синтеза которого

повышают экспрессию (*MSMEG_3898-MSMEG_3901*). Также выявлено повышение экспрессии генов, участвующих в метаболизме холина (*MSMEG_5967, MSMEG_5305, MSMEG_5944*).

- <u>Модуляция состава клеточной стенки и мембраны</u>. Низкие температуры существенно влияют на структурную и функциональную целостность клеточной стенки и мембран бактериальной клетки, что в итоге приводит к снижению текучести мембраны, изменению проницаемости и нарушению функций мембран-ассоциированных белков. Нами отмечено повышение ряда генов (*MSMEG_1350, MSMEG_0902, MSMEG_1205, MSMEG_3538, MSMEG_1351*) продукты которых участвуют в модификации миколовых кислот, что, предположительно, модулирует текучесть мембраны. Также, в первые часы ответа на холодовой стресс, повышается экспрессия ряда десатураз (*MSMEG_1743, MSMEG_5773, MSMEG_5248*), которые тоже принимают участие в снижении ригидности мембраны.
- Транскрипционные регуляторы и сигма-факторы. В процессе адаптации выявлено повышение экспрессии более 50 транскрипционных факторов, что отражает интенсивность происходящих с клеткой изменений. Среди них можно отметить транскрипционные факторы, участвующие в изменении липидного метаболизма (MSMEG 0120, MSMEG 2794), адаптации M. smegmatis к стационарному состоянию и глобальные голоданию (MSMEG 1747) и опосредующие реакции на стресс (MSMEG 2694, MSMEG 6077).
- Конформационные изменения ДНК и репарация. Обнаружено повышение экспрессии генов топоизомеразы первого типа (*MSMEG_1784*) и гена гистон-подобного белка hup (*MSMEG_2389*) в первые часы воздействия. Также было выявлено повышение экспрессии ряда генов, участвующих в репарации ДНК (*MSMEG_2943-MSMEG_2945*, *MSMEG_6083*).
- <u>Транспортеры.</u> Мы наблюдаем изменение экспрессии более 300 транспортеров *M. smegmatis* в условиях низких температур, что также указывает на глобальную перестройку метаболизма бактерии. Их можно поделить на 4 категории: транспортеры питательных веществ (претерпевают, в основном, снижение экспрессии), транспортеры осмопротекторов бетаина и эктоина (повышение экспрессии), транспортеры липидов (различные паттерны экспрессии, отражающие изменение состава мембраны) и эффлюксные насосы (в основном, снижение экспрессии).
- <u>Трансляция</u>. Среди ранее описанных генов, связанных с трансляцией, экспрессия которых изменяется в условиях низких температур, в нашем транскриптоме было отмечено повышение только одного из их гомологов - *MSMEG_1878* (микобактериальный белок Y), функция которого заключается в гибернации 70S рибосомы. Однако было обнаружено, что

под действием стресса снижается экспрессия более 25 генов рибосомных белков, что до сих пор не отмечалось.

Указанные адаптации дают общее представление о динамике происходящих процессов и указывают пути, которые могут находиться под контролем экспрессирующихся в этом состоянии нкРНК.

3.1.4. Аннотация некодирующего транскриптома M. smegmatis

Для того, чтобы аннотировать границы генов потенциальных нкРНК, мы провели секвенирование фракции коротких РНК (до 300 нуклеотидов), выделенных из проб тотальной РНК каждой временной точки при помощи метода гель-электрофореза. Детекция границ генов нкРНК проводили с помощью программы Rockhopper [122], названия идентифицированных генов нкРНК были присвоены в соответствии с номенклатурой, предложенной Lamichhane и соавторами [123], согласно которой в наименовании локуса нкРНК указан ближайший белок-кодирующий ген.

Всего было обнаружено 43 цис-кодируемых и 13 транс-кодируемых нкРНК (приложение И); из них 5 нкРНК уже было описано в предыдущих работах. В работе Li и соавторов [95] нкРНК *M. smegmatis* определяли методом иммунопреципитации с гетерологично экспрессированным в *M. smegmatis* белком Hfq *E.coli*; было описано 4 транскрипта (IGR-2, IGR-3, IGR-5, и AS-5), границы которых перекрываются с обнаруженными в нашем исследовании (ncMSMEG10373B, ncMSMEG11192, ncMSMEG15794с и ncMSMEG1286 соответственно). Также в нашей работе была обнаружена Ms1 (ncMSMEG16173) - одна из наиболее изученных микобактериальных малых PHK, впервые описанная в работе Ра́nek и соавторов [133].

3.1.5 Цис-кодируемые нкРНК

Классический механизм действия цис-кодируемых нкРНК предполагает, что они кодируются на противоположной цепи от гена их мРНК-мишени. После образования межмолекулярного РНК-РНК дуплекса между цис-кодируемой нкРНК и её мРНК мишенью следует расщепление этого дуплекса РНК-нуклеазами, поэтому логично предположить, что увеличение экспрессии нкРНК будет приводить к снижению количества транскриптов мРНК-
мишени. В итоге такая зависимость может быть выражена в виде негативной корреляции между количествами транскриптов нкРНК и соответствующей мРНК мишени [134].

Чтобы проверить наличие подобной негативной корреляции в наших данных, мы провели корреляционный анализ между двумя наборами данных: первый представлял суммы прочтений (для каждой из временных точек), картированные в рамках границ идентифицированных цискодируемых нкРНК, а второй — суммы прочтений, картированные в рамках границ белоккодирующего гена на противоположной цепи ДНК (для соответствующей временной точки). Корреляционные коэффициенты, полученные в результаты анализа, представлены в виде графика на Рисунке 16.

Рисунок 16 – Диаграмма корреляционных коэффициентов г между экспрессией идентифицированных нкРНК и их предполагаемых мРНК-мишеней; красным цветом выделены пары с негативным коэффициентом корреляции г меньше -0,5, интенсивность цвета отражает

силу коэффициента; вертикальными линиями обозначены пороги коэффициента корреляции r = - 0,5 и r = -0,7

В результате анализа было определено, что сильными отрицательными коэффициентами корреляции (-0,9 <r < -0,7) обладают 2 пары нкРНК-мРНК: ncMSMEG1429-MSMEG_1429 и ncMSMEG6179c-MSMEG_6179, и средней силы (-0,7 <r < -0,5) - еще 3 пары (ncMSMEG0651c-MSMEG_0651, ncMSMEG3182-MSMEG_3182, ncMSMEG0671-MSMEG_0671). Примеры профилей экспрессии пар нкРНК-мРНК ncMSMEG1429-MSMEG_1429 и ncMSMEG0651c-MSMEG_0651 приведены на Рисунке 17.

Рисунок 17 – Изменение транскрипции во времени цис-кодирумых нкРНК ncMSMEG1429 и ncMSMEG0651 и их предполагаемых мРНК мишеней *MSMEG_1429* и *MSMEG_0651* соответственно; транскрипция отображена в нормализованных значениях TPM (Transcripts per million); в правом верхнем углу указан коэффициент корреляции (r)

Ген *MSMEG_6179* кодирует главную ацетил-коА синтетазу *M. smegmatis*, выполняющую реакции конверсии ацетата в Ацетил-КоА, одного из важнейших соединений цикл трикарбоновых кислот [135].

Продуктом *MSMEG_1429* является цитохром P450terp, одна из форм микобактериальных цитохромов P450. Хотя точная функция этого белка на данный момент остается неясной, известно, что цитохромы P450 представляют собой разнообразную группу белков, участвующих в окислении многих соединений, в том числе и липидов [136].

Функции генов $MSMEG_0651$ и $MSMEG_0671$ на данный момент не установлены, известно, что они находятся под контролем альтернативного сигма фактора SigF, роль которого ассоциирована с адаптацией к широкому диапазону неблагоприятных условий [137]. Интересно, что в условиях холодового стресса нами была отмечена репрессия более 50 генов, входящих в *sigF* регулон, что свидетельствует о том, что они не вовлечены в адаптацию *M. smegmatis* к низким температурам. Репрессия $MSMEG_0651$ и $MSMEG_0671$ с помощью соответствующих антисмысловых нкРНК может являться дополнительным уровнем регуляции экспрессии этих генов.

Негативная регуляция перечисленных генов в процессе адаптации к холодовому стрессу может быть связана со стратегией сохранения энергии для выживания в неблагоприятных условиях. Мы предполагаем, что мРНК данных генов с наибольшей вероятностью являются мишенями соответствующих идентифицированных нкРНК.

Также необходимо отметить, что существуют варианты механизмов взаимодействия цискодируемой нкРНК с мРНК-мишенью, которые не приводят к снижению количества мРНК транскрипта, и поэтому отсутствие корреляции не является аргументом против их функционального взаимодействия. В частности, цис-кодируемые нкРНК могут модифицировать структуру мРНК или же влиять на эффективность её трансляции, не затрагивая уровень её экспрессии.

3.1.6 Транс-кодируемые нкРНК

Определение и проверка мишеней транс-кодируемых РНК является более сложной задачей, чем цис-кодируемых. Одним из наиболее перспективных и широко применяемых РНК метолов поиска мишеней лля транс-кодируемых служит использование специализированных предсказательных программ. Эти программы анализируют не только нуклеотидные последовательности, но и потенциальные вторичные структуры РНК, что позволяет идентифицировать возможные области взаимодействия между РНК. Такой комплексный анализ обеспечивает более высокую точность предсказания и учитывает уникальные особенности молекулярной структуры РНК. Однако стоит отметить, что, несмотря на эффективность предсказательных инструментов, окончательная верификация потенциальных мишеней требует экспериментальной проверки в лабораторных условиях.

Мы провели поиск потенциальных мРНК мишеней идентифицированных нкРНК при помощи веб-сервиса TargetRNA3, использующего алгоритм классификации на основе градиентного бустинга², который обучался на тысячах выявленных взаимодействий между малыми РНК и их регуляторными мишенями в различных прокариотах. Для каждой выявленной нами транс-кодируемой нкРНК, за исключением Ms1, мы предсказали вторичную структуру (приложение К) и идентифицировали ряд потенциальных мРНК мишеней (приложение Л).

Больше всего мРНК мишеней было предсказано для двух нкРНК - ncMSMEG13168 и ncMSMEG15794c - 38 и 63 транскрипта соответственно. Меньше всего (выявлена всего одна мРНК мишень) для нкРНК ncMSMEG10069c, ncMSMEG10373B, ncMSMEG11192 и ncMSMEG15379.

Существует 51 мРНК, которые являются мишенью для двух разных нкРНК, и 3 мРНК (*MSMEG_0883*, *MSMEG_4974*, *MSMEG_0688*), которые являются мишенью одновременно для трех разных нкРНК. То, что одна мРНК может быть мишенью для нескольких нкРНК, указывает на возможное наличие множественных путей регуляции для этой конкретной мРНК. Это может обеспечить бактерии гибкостью в реагировании на различные условия или стрессовые факторы, позволяя ей быстро и эффективно адаптироваться к меняющимся условиям окружающей среды. Также стоит учитывать, что взаимодействие многих регуляторов с одной мишенью может обеспечить усиление или, наоборот, подавление экспрессии целевого гена в зависимости от комбинации присутствующих нкРНК.

Между предсказанными мишенями мРНК и выявленными транс-кодируемыми нкРНК также был проведен корреляционный анализ и идентифицированы гены, экспрессия которых обладает как минимум средней (r < -0,5) негативной корреляцией с транскрипцией соответствующих нкРНК (Рисунок 18). Необходимо отметить, что в подавляющем большинстве случаев, в парах мРНК-нкРНК наблюдается снижение экспрессии целевого гена и повышение экспрессии соответствующей малой РНК в течение первых часов действия низких температур. К 24 часам, часть генов восстанавливает свою экспрессию.

² алгоритм машинного обучения для задач регрессии и классификации

Рисунок 18 – «Тепловые» карты, представляющие изменение экспрессии в динамике холодового стресса выявленных транс-кодируемых нкРНК и их мРНК мишеней с коэффициентом корреляции г меньше -0,5; цветом обозначены нормализованные значения экспрессии (Z-score); коэффициенты корреляций для каждой пары мРНК-нкРНК расположены в центральной колонке; представлены результаты секвенирования трех независимых биологических репликатов для каждой временной точки

Предсказанные мишени включают в себя мРНК генов, продукты которых участвуют в метаболизме аминокислот, транспортеры, транскрипционные регуляторы и белки, участвующие в ремоделинге мембраны. Транскриптомный анализ показал, что в этих процессах происходят глобальные изменения при адаптации бактерии к низким температурам. Таким образом, можно предположить, что активные в период адаптации нкРНК будут участвовать в регуляции описанных процессов. Предсказанные нами взаимодействия создают основу для понимания регуляции адаптивных процессов *М. smegmatis* к холодовому стрессу. Однако их экспериментальное подтверждение остается задачей для будущих исследований.

Единственной из обнаруженных нами транс-кодируемых РНК, для которой ранее была показана функция в *M. smegmatis*, является Ms1 (ncMSMEG16173). Количество этой нкРНК возрастает примерно в 4 раза после 24 часов воздействий низких температур (Рисунок 19). Ms1 является одним из наиболее многочисленных транскриптов нкРНК в стационарной фазе роста *M*.

smegmatis [106]. Она взаимодействует с кором РНК-полимеразы, конкурируя с сигма-факторами, а также участвует в транскрипции β и β' субъединиц РНК-полимеразы [105], тем самым контролируя транскрипционную активность клеток. Наиболее важным физиологическим эффектом Ms1 является консервация пула молекул РНК-полимеразы, который может быть использован клеток при реактивации из стационарной фазы. Накопление транскриптов Ms1, по всей видимости, является еще одним способом регуляции экспрессии генов (в дополнение к описанной гибернации рибосом и транскрипционной репрессии рибосомных белков) и подчеркивает схожесть процессов адаптации к низким температурам и стационарной фазе.

Рисунок 19 – Транскрипция малой некодирующей РНК Ms1 в динамике холодового стресса; транскрипция отображена в нормализованных значениях TPM (Transcripts per million)

Несмотря на то, что ответ на холодовой стресс у бактерий изучается с 60-х годов прошлого века [138; 139], информации об участии регуляторных РНК в этом процессе в научной литературе практически нет. Известно, что адаптация к низким температурам задействует РНК-структуры известные как РНК-термометры (или РНК-сенсоры), которые часто располагаются 5'-НТО мРНК транскриптов и в ответ на температурные изменения изменяют свою конформацию, что приводит к изменению экспрессии соответствующего гена [140]. Один из наиболее известных примеров РНК сенсоров, который чрезвычайно важен для ответа на холодовой стресс, располагается в 5'-НТО транскрипта *cspA*. При снижении температуры, этот сенсор претерпевает структурную перестройку, который значительно увеличивает эффективность трансляции мРНК [141].

Редким примером транс-кодируемой РНК, которая принимает участие в адаптации к холодовому стрессу, является dsrA *E. coli*. Низкие температуры стимулируют транскрипцию dsrA,

которая, в свою очередь, активирует экспрессию сигма-фактора стационарной фазы роста *rpoS* и нескольких других генов [142; 143].

В 2012 году было обнаружено, что низкие температуры индуцируют транскрипцию 6 нкРНК у морских цианобактерий *Synechococcus*, что предположительно указывает на их роль в адаптации [144].

Наше исследование является первым систематическим описанием некодирующего транскриптома *M. smegmatis* в условиях низким температур. В ходе работы было выявлено 43 цис-кодирумых, и 13 транс-кодируемых нкРНК, из которых ранее было описано только 5. Для них были предсказаны вторичные структуры и предположены потенциальные мРНК мишени. Результаты корреляционного анализа позволяют предположить, что некоторые нкРНК могут принимать участие в ответе на холодовой стресс, ингибируя экспрессию ряда генов для сохранения энергии. Также был впервые описан транскриптомный ответ микобактерий в условиях низких температур в динамике и выявлены процессы, происходящие при адаптации.

3.2 Роль малой РНК F6 в переходе M. smegmatis в состояние покоя

F6 – малая некодирующая РНК, является консервативной у многих микобактерий - как патогенных, так и свободноживущих видов. Была впервые обнаружена и подтверждена в *M. tuberculosis* [88]. Показано, что повышение транскрипции этой малой РНК у *M. tuberculosis* наблюдается при неблагоприятных для клетки условиях: в окислительном и кислотном стрессах, гипоксии, макрофагальной инфекции и недостатке питательных веществ [88; 145]. На основании этих данных нами было предположено, что F6 должна играть важную роль в адаптации микобактерий к стрессам, и была поставлена задача изучить влияние, а также выявить молекулярные механизмы действия этой нкРНК в *M. smegmatis*.

3.2.1 Влияние гена нкРНК M. smegmatis F6 на фенотип бактерии в нормальных условиях

Для определения функционального значения и потенциальной регуляторной роли нкРНК F6, нами был создан мутантный штамм *M. smegmatis* с делецией гена этой малой РНК (далее - ΔF6). Для его конструирования был использован стандартный для микобактерий метод сайтнаправленного мутагенеза с использованием шаттл-вектора p2NIL/pGOAL [110]. Данный метод

использует процесс гомологичной рекомбинации и состоит из двух этапов: на первом этапе происходит интеграция шаттл-вектора в область генома, фланкирующую делетируемый ген, а на втором происходит эксцизия этой генетической конструкции, один из вариантов которой предполагает направленное вырезание шаттл-вектора с захватом делетируемой области. Отбор клонов на каждом этапе проводится при помощи специальных селективных питательных сред. Общая схема данного этапа работы представлена на Рисунке 20.

Рисунок 20 – Создание штамма *M. smegmatis* с делецией гена нкРНК F6. (A) Схематичное изображение молекулярных событий двухстадийной стратегии мутагенеза; RHA, LHA (Right/Left homologous allele – правый/левый гомологичный аллель) – обозначения фланкирующих ген F6 последовательностей ДНК, расположенных справа и слева от него соответственно; (B) Последовательность этапов селекции *M. smegmatis* в ходе получение штамма с делецией гена нкРНК F6

Подтверждение делеции гена после второго этапа селекции было проведено при помощи метода ПЦР (Рисунок 21) с последующим секвенированием амплифицированного продукта по методу Сэнгера. Выбранный клон Δ F6 имел делецию в области 417,720–417,885 п.н. согласно аннотации генома *M. smegmatis* в Mycobrowser [117].

Рисунок 21 – Электрофореграмма продуктов амплификации геномной области, содержащей ген малой РНК F6 клонов *M. smegmatis*, прошедших оба этапа селекции; красной рамкой выделены продукты, соответствующие клонам, в которых ген F6 делетирован

Полученный штамм ΔF6 не демонстрировал отличий в скорости роста по сравнению со штаммом дикого типа *M. smegmatis* (далее MSM_WT) (Рисунок 22). Однако с помощью метода световой микроскопии было обнаружено, что штамм ΔF6 в ранней логарифмической фазе роста в жидкой питательной среде проявляет повышенную склонность к агрегации по сравнению с культивируемым штаммом (Рисунок 23), что может свидетельствовать об изменении состава клеточной стенки при делеции гена F6.

Рисунок 22 – Кривые роста штамма дикого типа (MSM_WT) и делеционного мутанта по гену F6 (Δ F6) *M. smegmatis*; данные представлены как среднее ± стандартное отклонение трех независимых экспериментов

Рисунок 23 – Световая микроскопия бактерий *M. smegmatis* в ранней логарифмической фазе роста штамма дикого типа (MSM_WT) и делеционного мутанта по гену F6 (ΔF6); увеличение x1250 (слева) и изображение культур штаммов в жидкой питательной среде (справа)

3.2.2 Делеция F6 вызывает изменения в экспрессии ряда генов M. smegmatis

Для того, чтобы выявить метаболические пути *M. smegmatis*, на которые малая PHK F6 может оказывать влияние, было проведено массовое параллельное секвенирование транскриптомов штаммов Δ F6 и MSM_WT в средней логарифмической фазе роста (ОП₆₀₀ ~ 1,0), в биологическом трипликате. В ходе анализа было выявлено 15 генов, которые статистически значимо повысили свою экспрессию в штамме Δ F6 по сравнению с культивируемым штаммом (Рисунок 24; Приложение M).

Рисунок 24 – Диаграмма Volcano, отображающая дифференциальную экспрессию генов в штамме *M. smegmatis* Δ F6 относительно штамма MSM_WT. Статистически достоверно дифференциально экспрессированные гены (Log₂FC > 2,0, FDR < 0,05) выделены красным цветом.

Эти гены могут быть разделены на 2 крупных кластера, располагающихся в одном геномном локусе: *MSMEG_0156-MSMEG_0162*, *MSMEG_0149-MSMEG_0152* (Рисунок 25) и отдельно расположенный ген *MSMEG_4640*.

Рисунок 25 – Схема расположения двух кластеров генов в геноме M. smegmatis, экспрессия которых возрастает в M. smegmatis Δ F6

Первый кластер (*MSMEG_0156-0162*) включает в себя ряд генов, вовлеченных в метаболизм формиата. Среди них можно отметить продукт MSMEG_0157, который отвечает за утилизацию оксалата, токсичного для *M. smegmatis* метаболита [146]. Гомолог *MSMEG_0157* у *M. tuberculosis* входит в категорию генов, необходимых для роста бактерии [147].

Другой ген этого оперона, $MSMEG_0156$, кодирует транскрипционный регулятор семейства LysR, гомолог которого у M. tuberculosis контролирует ответ микобактерии на окислительный стресс путем подавления экспрессии генов каталаз-пероксидазы (katG) и алкилгидроксипероксидредуктазы (ahpC). Гиперэкспрессия гена этого транскрипционного фактора приводит к более чувствительному к пероксидам фенотипу [148].

Второй кластер включает в себя гены *MSMEG_0149-0152*, среди которых можно выделить ген протонной помпы PntAB (*MSMEG_0151*), которая участвует в адаптации бактерии к кислотному и окислительному стрессам [149].

Для подтверждения того, что выявленные изменения в экспрессии генов, связаны именно с эффектом, возникшим в результате делеции гена нкРНК F6, был создан комплементированный штамм (ΔF6:F6), в котором ген F6 был встроен в геном ΔF6 штамма в составе инсерционного вектора pMV306 под контролем сильного микобактериального промотора *rrnB*. Для проверки отсутствия влияния самого вектора, был создан дополнительный штамм ΔF6:pMV306, в геном которого была интегрирована плазмида без гена F6. Восстановление экспрессии гена F6 в комплементированном гене было подтверждено с помощью метода нозерн-блота (Приложение H).

Случайным образом было отобрано несколько генов (*MSMEG_0149*, *MSMEG_0150*, *MSMEG_0157*, *MSMEG_0162*, *MSMEG_4640*), для которых было показано изменение экспрессии при делеции гена F6. При анализе экспрессии этих генов методом количественной ОТ-ПЦР в штаммах MSM_WT и ΔF6 были подтверждены данные транскриптомного профилирования (Рисунок 26). Для комплементированного штамма было зафиксировано возвращение экспрессии к уровням, близким к WT штамму.

Рисунок 26 – Подтверждение дифференциально экспрессируемых генов методом количественной ОТ-ПЦР; экспрессия всех генов была нормализована на 16S рРНК; р <0,05, **p < 0,01, ***p < 0,001, ND – транскрипция не детектирована

3.2.3 мРНК MSMEG_4640 является прямой молекулярной мишенью малой РНК F6

Как было отмечено в главе 1.2, одним из самых оптимальных методов поиска молекулярных мишеней бактериальных малых РНК является комбинация транскриптомного профилирования и *in silico* методов, позволяющих предсказать потенциальные мРНК, которые способны взаимодействовать с исследуемой нкРНК. Для поиска мишеней малой РНК F6 мы использовали программу CopraRNA [125], которая определяет вероятность спаривания малой РНК и с каждой мРНК бактерии на основании их нуклеотидных последовательностей и вторичных структур, а затем составляет ранжированный список наиболее вероятных мРНК-мишеней. Особенностью данной программы является также то, что она использует данные не только исследуемого организма, но и близкородственных видов для увеличения точности предсказания.

85

Анализ списка предсказанных мРНК мишеней для F6 (приведен в приложении П) показал, что одна из потенциальных областей взаимодействия располагается в 5'-НТО мРНК гена *MSMEG_4640* (Рисунок 27), повышение экспрессии которого было отмечено при сравнении транскриптомов MSM_WT и Δ F6 штаммов.

Рисунок 27 – Вторичные структуры малой РНК F6 и 5'-НТО *MSMEG_4640*; нуклеотиды предсказанной области взаимодействия выделены красным цветом; старт-кодон мРНК выделен зеленым цветом

Анализ транскриптомного профиля подтвердил, что мРНК *MSMEG_4640* действительно содержит 5'-НТО длиной ~90 нуклеотидов (Рисунок 28).

Рисунок 28 – Визуализация покрытия секвенирования локуса генома *M. smegmatis*, которая содержит ген *MSMEG_4640*; для визуализации были использованы данные PHK-секвенирования штамма ΔF6; 5'-HTO обозначена красными вертикальными линиями

Вторичная структура этого участка складывается в петлю в районе -30 – -38 нуклеотидов от старт-кодона, которая содержит 8-нуклеотидную область, комплементарную петле F6 (Рисунок 27).

Следующим шагом стало экспериментальное подтверждение прямого взаимодействия малой РНК F6 и 5'-НТО мРНК *MSMEG_4640*. Для этого на основе инсерционного вектора pMV306 была создана репортерная конструкция, в которой 5'-НТО *MSMEG_4640* была расположена перед кодирующей последовательностью гена *GFP* под промотором микобактериального гена *hsp60* (pMV306-MSMEG4640_{5'utr}-GFP). Последовательность гена малой РНК F6 была лигирована в автономно-реплицирующийся вектор pAMYC под управлением сильного микобактериального промотора *rrnB* (pAMYC-F6).

На основе плазмид рАМҮС-F6 и рМV306-MSMEG46405[,] иtr-GFP мы создали два производных вектора pAMYC-F6mut и pMV306-MSMEG46405'utrmut-GFP, в которых в последовательность ДНК предполагаемой области взаимодействия между малой РНК F6 и 5'-НТО MSMEG 4640 были внесены 3 точечные мутации с помощью коммерческого набора Q5[®] Site-Directed Mutagenesis Kit (NEB, CША) и пар олигонуклеотидов F6-mut-for/F6-mut-for и UTR4640 mut-for/UTR4640 mut-rev соответственно. Мутации были подобраны таким образом, чтобы нарушить проверяемое взаимодействие между F6 и 5'-НТО мРНК MSMEG 4640 при использовании репортерной системы в комбинациях с одним интактным и одним мутантным (pAMYC-F6/pMV306-MSMEG4640_{5'utr}mut-GFP или pAMYC-F6mut/pMV306векторами MSMEG46405'utr-GFP). При использовании комбинации двух мутантных векторов (рАМҮС-F6mut/pMV306-MSMEG46405'utrmut-GFP) предполагаемое взаимодействие должно было быть восстановлено (Рисунок 29). Внесенные мутации были проверены с помощью секвенирования по методу Сэнгера. Полная схема создания векторов рАМҮС-F6, рАМҮС-F6mut, рМV306-MSMEG4640_{5'utr}-GFP и pMV306-MSMEG4640_{5'utr}mut-GFP приведена в Приложении Г.

F6 mut	uCAGaCaC
F6 sRNA	3' gcagc <mark>ccagcccc</mark> ccagu 5'
	1111111
MSMEG_4640	5'UCGGA GGUCGGGGA AGGG3'
MSMEG 4640 n	nut aGUCuGuG

Рисунок 29 – Схематичное представление взаимодействия малой РНК F6 и 5'-НТО *MSMEG 4640*; Введенные в последовательности точечные мутации выделены нижним регистром

Полученные плазмиды в 4 возможных комбинациях, соответствующих вариантам интактного, нарушенного восстановленного взаимодействия рассматриваемых И последовательностей, были трансформированы в штамм *M. smegmatis* $\Delta F6$. Оценка интенсивности флуоресценции клеточных лизатов культур рекомбинантных штаммов показала, что нарушение комплементарности последовательностей — при внесении мутаций в последовательность как малой РНК, так в 5'НТО гена MSMEG 4640 — приводит к усилению флуоресцентного сигнала (Рисунок 30). Таким образом, внесение мутаций в область взаимодействия препятствует образованию межмолекулярного РНК-РНК дуплекса, тем самым нарушая контроль экспрессии репортерного гена. При использовании обеих мутантных плазмид одновременно взаимодействие восстанавливается, и интенсивность сигнала снижается до исходного уровня.

Рисунок 30 – Гистограмма, представляющая результаты экспериментальной оценки взаимодействия малой РНК F6 с 5'-НТО *MSMEG_4640* с использованием различных вариантов репортерной конструкции; обозначение WT маркирует вариант интактной последовательности, mut – мутантный вариант; ***p < 0,001

Этот опыт показывает, что малая РНК F6 напрямую контролирует экспрессию гена *MSMEG_4640*, связываясь с 8-нуклеотидной последовательностью, расположенной в 5'НТО мРНК *MSMEG_4640*.

Вывод о прямом контроле экспрессии *MSMEG4640* с помощью малой PHK F6 был также подтвержден на белковом уровне: вестерн-блоттинг с помощью антител к консервативному домену Rpf показал значительное повышение количества RpfE2 в ΔF6 штамме (Рисунок 31).

Рисунок 31 – Анализ экспрессии RpfE2 в культурах MSM_WT и ∆F6 методом вестернблоттинга с антителами против консервативного домена Rpf; молекулярная масса RpfE2 составляет 15,1 кДа согласно данным Mycobrowser

3.2.4 Делеция гена нкРНК F6 ингибирует переход M. smegmatis в состояние покоя

Ранее было показано, что в *M. tuberculosis* транскрипция малой РНК F6 возрастает в условиях кислого и окислительного стрессов [88]. Оценка транскрипции F6 с помощью метода Нозерн-блоттинга в условиях этих стрессов в *M. smegmatis* показала лишь незначительное снижение транскрипции малой РНК в кислых условиях (pH 6,0) и отсутствие изменения при в окислительном стрессе (H_2O_2) (Рисунок 32).

Рисунок 32 – Количество РНК F6 в средней логарифмической фазе роста штамма MSM_WT в условиях кислотного (pH 6,0) и окислительного (H₂O₂) стрессов, определенное методом Нозерн-блота (верхняя панель); в качестве контроля использована 5S РНК (нижняя панель)

Сравнение клеточной культуры штаммов $\Delta F6$ и WT выявило статистически значимое увеличение оптической плотности $\Delta F6$ при росте в условиях окислительного стресса (Рисунок 33). Этот эффект может быть объяснен повышением в $\Delta F6$ штамме экспрессии генов, вовлеченных в ответ на окислительный стресс, и, в частности и гена протонной помпы PntAB (*MSMEG 0151*) [149].

Рисунок 33 – Оптическая плотность жидких культур штаммов MSM_WT и Δ F6 *M*. *smegmatis* измеренные в условиях окислительного стресса (0,5 мМ H₂O₂); *** p < 0,001

Ha профилирования основании данных транскриптомного И экспериментов, доказывающих прямое взаимодействие малой РНК F6 и мРНК MSMEG 4640, было предположено, что существенное повышение экспрессии MSMEG 4640 в ΔF6 штамме может повлиять на фенотип бактерии при специфических условиях. Продукт гена MSMEG 4640 представляет собой белок RpfE2, который относится к семейству факторов ресусцитации Rpf, участвующих в механизмах перехода микобактерий в состояние покоя [150; 151]. Была выдвинута гипотеза о том, что F6 участвует в контроле этого перехода, регулируя экспрессию RpfE2. Оба штамма (MSM WT и ΔF6) были проверены на способность переходить в некультивируемое состояние, а также на способность к обратному процессу - реактивации. Эти эксперименты были проведены на модели покоя M. smegmatis. Культура клеток со сниженной метаболической активностью и неспособных к росту на твердой среде была получена при росте микобактериальной культуры в среде с ограниченным содержанием ионов калия [111].

Оба штамма обладают схожим потенциалом к переходу из состояния покоя в активное (Рисунок 34): статистически значимой разницы в количестве реактивированных клеток между штаммом ΔF6 и штаммом MSM WT выявлено не было.

Рисунок 34. Оценка реактивации некультивируемых клеток штаммов MSM_WT и ΔF6 *M*. *smegmatis* (количество клеток было оценено с помощью метода наиболее вероятного числа (HB4) с использованием стандартных статистических таблиц [112])

Однако способность к переходу в некультивируемое состояние у штамма ΔF6 оказалась существенно нарушена по сравнению с контрольным штаммом дикого типа: в модели покоя его КОЕ превышает показатели контрольного штамма (MSM WT:pMV306, содержит контрольные

вектор без гена малой РНК) более чем в 3 порядка. Комплементированный штамм Δ F6:F6 демонстрирует почти полное восстановление способности переходить в покоящееся состояние по сравнению с Δ F6 штаммом, содержащим контрольный вектор без гена малой РНК (Рисунок 35, Рисунок 36), что свидетельствует о том, что малая РНК F6 действительно вовлечена в процесс перехода в некультивируемое состояние через контроль экспрессии RpfE2. Оценка экспрессии *MSMEG_4640* в этих условиях методом qPCR показала присутствие транскрипта этого гена только в Δ F6 штамме (Приложение Р).

Рисунок 35 – Оценка числа колониеобразующих единиц (КОЕ) штаммов MSM_WT:pMV306, Δ F6:pMV306 и Δ F6:F6 *M. smegmatis* в питательной среде с ограниченным содержанием ионов калия; *** p < 0,001

Рисунок 36 – Визуальная оценка роста штаммов MSM_WT, ΔF6, ΔF6:pMV306 и ΔF6:F6 в различных разведениях на агаризованной питательной среде после культивации в жидкой среде с ограниченным содержанием ионов калия

F6 – малая РНК, которая консервативна у всех микобактерий, включая *M. tuberculosis*. Параллельно нашим исследованиям, в 2021 году Houghton и соавторы показали, что ген F6 у *M. tuberculosis* находится под контролем транскрипционного фактора SigF и повышает свою экспрессию во время голодания [145]. Предполагается, что F6 может модулировать экспрессию шаперонинов GroES и GroEL2, стимулируя выживание *M. tuberculosis* в грануломах. Тем не менее, доказательств прямого взаимодействия F6 с мРНК генов этих белков на данный момент не существует.

Сравнение промоторных областей гена F6 *M. smegmatis* и *M. tuberculosis* показало, что у *M. smegmatis* консенсусный сайт связывания (-35 нт) транскрипционного фактора SigF изменен на сайт связывания SigD [152]. У микобактерий повышение экспрессии SigD наблюдается в условиях голодания, а снижение во время гипоксии [153]. Таким образом, регуляцию транскрипции малой PHK F6 еще только предстоит изучить, но в *M. smegmatis* она не зависит от SigF. Результаты нашей работы показывают, что, несмотря на высокую консервативность F6, её функция и молекулярные мишени в *M. smegmatis* отличаются от описанных в *M. tuberculosis*.

Наше исследование также показывает, что одна некодирующая РНК может интегрировать ответ бактерии на разные стрессы, выполняя сразу несколько функций и регулируя разные клеточные процессы. Так, для F6 нами было описано участие этой малой РНК в ответе на окислительный стресс, что выражено в негативной регуляции генов, вовлеченных в защиту от активных форм кислорода. Также было показано, что транскрипция F6 необходима для эффективного перехода *M. smegmatis* в некультивируемое состояние путем прямого контроля экспрессии фактора ресусцитации RpfE2. Переход в некультивируемое состояние является чрезвычайно важным свойством микобактерий, которое позволяет им переживать множество неблагоприятных условий, а F6 — это первая микобактериальная малая PHK, для которой было показано участие в этом процессе. Схематичное изображение действия малой некодирующей PHK F6 приведено на Рисунке 37.

Рисунок 37 – Две роли нкРНК F6 в *M. smegmatis*; (А) Негативная регуляция экспрессии генов адаптации к окислительному стрессу; (В) Регуляция перехода *M. smegmatis* в некультивируемое состояние путем контроля экспрессии фактора ресусцитации RpfE2

3.3 Роль малой РНК МТS1338 в адаптации *M. tuberculosis* к персистированию внутри макрофагов

Известно, что в адаптации бактериальных патогенов к внутриклеточным стрессам участвуют малые некодирующие РНК [65; 154]. Малая нкРНК МТS1338 консервативна и присутствует только у видов, входящих в состав туберкулезного комплекса, что потенциально делает ее специфичным регулятором, специализированным на адаптационных процессах, характерных именно для патогенных микобактерий. В этой связи, изучение функциональной роли MTS1338 может предоставить важную информацию о механизмах, которые патогенные микобактерии используют для выживания и адаптации в условиях внутриклеточного стресса.

3.3.1 MTS1338 накапливается в покоящихся бактериях, но не участвует в процессе реактивации

Ранее было показано, что MTS1338 активно транскрибируется в стационарной фазе, накапливается в бактериях, находящихся в некультивируемом состоянии (состоянии покоя) [155] и в хронической фазе инфекции *in vivo*, что свидетельствует о том, что данная малая PHK может обладать высокой стабильностью в клетках *M. tuberculosis* [156]. Мы решили изучить изменение транскрипции MTS1338 при переходе *M. tuberculosis* из состояния покоя в состояние активного деления и роста (реактивации).

Для проведения эксперимента была использована модель покоящегося состояния при инкубации *M. tuberculosis* в среде с ограниченным содержанием ионов калия [113]. Полученную культуру подвергали процессу реактивации в богатой питательной среде, клетки для выделения РНК были собраны через 24 и 48 часов после начала реактивации. На основе полученных образцов РНК синтезировали кДНК и оценивали транскрипцию MTS1338 методом количественной ОТ-ПЦР. Параллельно был проведен аналогичный эксперимент, в котором перед началом реактивации в питательную среду добавляли антибиотик рифампицин (5 мкг/мл) для ингибирования активности РНК-полимеразы.

Процесс реактивации клеток начинается в течении первых суток, что отражено в увеличении уровня включения урацила (Рисунок 38, А). При этом, деление клеток начинается только после 6 суток инкубации в среде для реактивации (Рисунок 38, А). Количество MTS1338 не изменяется с течением времени в первые дни реактивации (Рисунок 38, В), в том числе и в

условиях инактивации РНК-полимеразы рифампицином, что говорит о том, что в процессе реактивации отсутствует *de novo* синтез этой нкРНК.

Таким образом, MTS1338 характеризуется высокой *in vivo* стабильностью в клетках *M. tuberculosis*. Длительное сохранение некодирующей РНК в клетках, даже при отсутствии её *de novo* синтеза, может служить стратегией быстрого реагирования на изменяющиеся условия окружающей среды, позволяя бактериям моментально реагировать на изменения без необходимости «тратить» ресурсы на дополнительную транскрипцию.

Рисунок 38 – (А) Включение ³Н-урацила (измерения обозначены треугольными символами) и кривые роста (измерения обозначены круглыми символами) при реактивации культуры *М. tuberculosis* из покоящегося состояния без (черный цвет) и в присутствии рифампицина (красный цвет); (В) Оценка уровня транскрипции MTS1338 в процессе реактивации

3.3.2 Пик транскрипции нкРНК МТS1338 в мышиной модели инфекции наблюдается после 10-й недели

Ранее было показано, что некоторые нкРНК *M. tuberculosis*, в том числе MTS1338, активно транскрибируются в мышиных моделях инфекции *in vivo* [90; 104]. На основе этих данных была впервые предположена важность MTS1338 в контексте заболевания. В целях оценки динамики транскрипции MTS1338 во время инфекции, был проведен эксперимент, в ходе которого

генетическая линия мышей C57BL/6 (B6) была заражена штаммом *M. tuberculosis* H37Rv. C57BL/6 (B6) — это линия мышей, обладающая генетической устойчивостью к туберкулезу, в результате чего у животных развивается хорошо контролируемое хроническое заболевание [157].

В нескольких временных точках заражения из мышиных лёгких выделяли тотальную РНК и оценивали транскрипцию малой РНК MTS1338 с помощью метода количественной OT-ПЦР (Рисунок 39, А). Параллельно, гомогенат из мышиных лёгких высевали на агаризованную питательную среду для оценки бактериальной нагрузки на легкие мышей в ходе заболевания (Рисунок 39, В).

Было показано, что транскрипция MTS1338 резко повышается к 10 неделе инфекции, моменту, когда формируется устойчивое хроническое заболевание [158]; после этого транскрипция MTS1338 остается на постоянном уровне, лишь незначительно снижаясь к 54 неделе.

Рисунок 39 – Прогрессия инфекции *M. tuberculosis* H37Rv в резистентных к туберкулезу B6 мышах; (А) Уровень транскрипции MTS1338 в ходе инфекции; (В) Оценка бактериальной нагрузки (КОЕ) в мышиных легких в ходе инфекции; *p < 0,05, **p < 0,01, ***p < 0,001

3.3.3 Главным индуктором транскрипции MTS1338 ex vivo является NO

Результаты заражения показали, что транскрипция малой РНК MTS1338 повышается в хронической фазе инфекции. Одним из ключевых регуляторов формирования эффективного адаптивного иммунного ответа, необходимого для контроля над заболеванием, является

интерферон-гамма (IFN-γ) [159; 160]. Интерферон-гамма — это важный провоспалительный цитокин, который активирует макрофаги, улучшая их способность фагоцитировать и уничтожать патогены, и усиливает презентацию антигенов, путем повышения экспрессии молекул главного комплекса гистосовместимости. Дополнительно, IFN-γ стимулирует адаптивный иммунный ответ, усиливая функции Th1-клеток и активизируя экспрессию интерферон-стимулированных генов (ISGs) для противовирусной защиты. Учитывая принципиальную роль этого цитокина, нами был проведен эксперимент, анализирующий влияние INF-γ на транскрипцию малой PHK MTS1338 в условиях заражения *ex vivo*.

Активированная INF-ү и неактивированная культуры перитонеальных макрофагов мышей линии B6 были заражены штаммом *M. tuberculosis* H37Rv. В нескольких временных точках (2, 4, 24 часа) заражение останавливали, выделяли РНК и оценивали транскрипции нкРНК MTS1338 методом количественной ОТ-ПЦР. Результаты показали, что во всех точках транскрипция MTS1338 была статистически значимо выше при первоначальной активации макрофагов IFN-ү (Рисунок 40).

Рисунок 40 – Динамика транскрипции MTS1338 при заражении перитонеальных макрофагов мышей линии B6 при активации INF-у и без нее; *p < 0,05, **p < 0,01, ***p < 0,001

Ранее было показано, что ген нкРНК MTS1338 находится под контролем DosR, одного из важнейших транскрипционных факторов *M. tuberculosis* [156], который регулирует реакцию на стресс и опосредует переход бактерии в покоящееся состояние [161]. Было установлено, что

индуктором транскрипции MTS1338 *in vitro* является оксид азота (II) (NO) [156], который, наравне с гипоксией, является активатором экспрессии DosR. Однако полная цепь событий, приводящая к транскрипции MTS1338 при инфекции, не была известна.

Синтез производных оксида NO является одной из важнейших стратегий с помощью которой макрофаги проявляют бактерицидную активность [162]. Выработка производных NO зависит от индуцибельной NO-синтазы (iNOS), экспрессия которой, в свою очередь, активируется IFN-ү [163]. Соответственно, было предположено, что повышение уровня транскрипции нкРНК MTS1338 *ex vivo* при активации макрокрофагов IFN-ү опосредовано NO, произведенным iNOS. Для проверки этой гипотезы активированные IFN-ү и зараженные *M. tuberculosis* макрофаги обрабатывали селективным ингибитором iNOS - L-NIL [N6-(1-иминоэтил)-L-лизина гидрохлорид] и инкубировали 24 часа. Применение ингибитора ведет к полному нивелированию эффекта повышения транскрипции MTS1338, наблюдаемому при активации IFN-ү (Рисунок 41). При этом, L-NIL не оказывает влияния на уровень транскрипции MTS1338 в бактериальной культуре.

Таким образом, дополняя и расширяя известные данные о регуляции транскрипции MTS1338, этот эксперимент демонстрирует, что главным триггером транскрипции MTS1338 в условиях заражения макрофагов *ex vivo* является NO, произведенный iNOS. Последовательность событий, приводящая к транскрипции MTS1338 при инфекции изображена на Рисунке 42.

Рисунок 41 – Уровень транскрипции MTS1338 через 24 часа после инфекции: контроль (mφ + MTB), активация IFN-γ (mφ + MTB + INF-γ), активация IFN-γ и обработка L-NIL (mφ +

МТВ + INF-γ + L-NIL), бактериальная культура без инфекции (МТВ) и бактериальная культура с обработкой L-NIL. ***p < 0,001, ns – статистически значимой разницы не обнаружено

Рисунок 42 – Схематичное изображение последовательности событий, которая приводит к транскрипции MTS1338 в условиях заражения макрофагов *ex vivo*

3.3.4 Гиперэкспрессия малой РНК MTS1338 способствует выживанию *M. tuberculosis* при действии стрессоров *in vitro*

Активация транскрипции MTS1338 в условиях заражения и установленный нами путь индукции её транскрипции свидетельствуют о том, что функция этой некодирующей PHK может быть связана с внутриклеточным выживанием M. tuberculosis при действии неблагоприятных условий. Для проверки этого предположения нами был проведен эксперимент, оценивающий влияние повышения уровня транскрипции MTS1338 на выживание M. tuberculosis при действии ряда макрофаго-подобных стрессов *in vitro*. Для получения штамма M. tuberculosis, гиперэкспрессирующего MTS1338, был использован вектор pMV261, в который был клонирован ген MTS1338 под управлением сильного микобактериального промотора *rrnB* (Приложение Д).

Жидкие культуры штамма *M. tuberculosis*, гиперэкспрессирующего MTS1338 (mtb_pMV261_1338), и контрольного штамма, трансформированного вектором pMV261rrnB (mtb pMV261 E) инкубировали в трех условиях, моделирующих разные стрессовые

воздействия: кислотный стресс (pH = 5,5), нитрозативный стресс (NO) и окислительный стресс (H₂O₂). Срок инкубации для всех условий составлял 48 часов. Эксперимент был проведен для двух состояний бактериальной популяции *M. tuberculosis* - логарифмической и стационарной фаз роста.

Транскрипционную активность клеток оценивали по уровню включения радиоактивно меченного ³Н-урацила. Известно, что уровень включения ³Н-урацила обладает сильной положительной корреляцией с количеством колониеобразующих единиц (КОЕ) [164]. Уровень включения ³Н-урацила в штаммах, которые не испытывали стрессовых условий, был установлен как базовый и составлял 100%.

В результате эксперимента было показано, что гиперэкспрессия MTS1338 статистически значимо влияет на выживание *M. tuberculosis* в каждом из стрессирующих состояний как в логарифмической фазе (Рисунок 43, А), так и в стационарной фазах роста (Рисунок 43, В), что выражается в повышении уровня включения ³Н-урацила. Выраженное повышение устойчивости к разным стрессирующим состояниям при гиперэкспрессии MTS1338 впервые позволяет классифицировать эту нкРНК как фактор вирулентности, контролирующий механизмы адаптации бактерии к неблагоприятным условиям внутри макрофага.

Рисунок 43 – Включение ³Н-урацила гиперэкспрессирующим MTS1338 (mtb_pMV261_1338) и контрольным (mtb_pMV261_E) штаммами *M. tuberculosis* в условиях стрессов *in vitro*; (А) Логарифмическая фаза роста; (В) Стационарная фаза роста; *p < 0,05, ***p < 0,001

3.3.5 Гиперэкспрессия MTS1338 в *M. tuberculosis* модулирует экспрессию стрессспецифических генов

Для того, чтобы изучить, как гиперэкспрессия MTS1338 влияет на адаптацию *M. tuberculosis* на уровне транскриптома, нами было проведено транскриптомное профилирование обоих созданных штаммов (mtb_pMV261_1338, mtb_pMV261_E) в условиях изучаемых стрессов. Анализ дифференциальной экспрессии генов показал, что вне зависимости от вида и наличия стресса, гиперэкспрессия MTS1338 приводит к повышению экспрессии 11 генов (Рисунок 44).

Рисунок 44 – Диаграммы Volcano, отображающие дифференциальную экспрессию генов в каждом из сравнений (штамм mtb_pMV261_1338 против штамма mtb_pMV261_E) во всех анализируемых состояниях; статистически значимо дифференциально экспрессированные гены $(log_2FC \ge 1,5, P_{adj} \le 0,1)$ выделены красным цветом; гены, дифференцальная экспрессия которых была обнаружена во всех состояниях, выделены зеленым цветом

Список этих генов был нами назван MTS1338-специфичной сигнатурой, т.к., по всей видимости, они находятся под прямым контролем MTS1338; их функции связаны с широким спектром адаптации микобактерии к различным стрессам (Таблица 1).

Ta	блица	1 – Гены	MTS1338-c	пецифической	сигнатуры,	дифференциальная	экспрессия
которых б	была де	тектирова	на при гипе	рэкспрессии М	ITS1338 во в	сех условиях	

Гон	Log ₂ FC				A	
Ген	Control	pН	NO	H_2O_2	Функция	
galK	1,50	2,00	2,15	2,14	Галактокиназа; вовлечена в метаболизм галактозы.	
rv0792c	1,59	1,70	1,80	1,97	Транскрипционный фактор, необходимый для нормального развития инфекции и адаптации <i>M. tuberculosis</i> к окислительному стрессу [165].	
rv0826	2,38	1,95	2,60	2,32	Консервативный мембранный белок с неизвестной функцией, транскрипция которого находится под контролем металл- чувствительного транскрипционного фактора KmtR [166].	
rv1395	2,30	2,01	2,53	1,65	Транскрипционный фактор, вовлеченный в регуляцию цитохром Р450-зависимой монооксигеназы [167]; мутации в этом гене приводят к аттенюации штамма в мышиной модели инфекции [168].	
cmtR	2,14	2,17	1,88	1,58	Металл-чувствительный репрессор [169]; необходимый для выживания микобактерий в условиях окислительного стресса [170]; участвует в модуляции экспрессии генов другого металл-чувствительного репрессора, Zur, напрямую взаимодействуя с ним [169].	
rv2034	3,08	2,68	3,45	2,58	Металл-чувствительный транскрипционный фактор, который участвует в активации транскрипции генов <i>dosR</i> [171] и <i>phoP</i> [172] регулонов, одних из наиболее важных стрессиндуцируемых систем <i>M. tuberculosis</i> .	
Rv2035	2,13	1,90	2,41	1,56	Предположительно вовлечен в липидный метаболизм [171]; Структурный гомолог у <i>M. smegmatis</i> участвует в регуляции активности гомолога Rv2034, составляя токсин- антитоксиновую пару [173].	
cadI	2,21	2,00	3,26	2,17	Экспрессия которого индуцируется ионами кадмия [174], меди [175] и цинка [176]; предположительно участвует в механизмах защиты бактерии от токсичности металлов [177].	
rv2642	2,20	2,23	2,79	1,91	Металл-чувствительный транскрипционный фактор, который регулирует экспрессию <i>cadI</i> [178] и участвует в механизмах резистентности к антибиотикам [179].	
mpt70	2,51	2,36	2,78	2,09	Уникальный антиген <i>M. tuberculosis</i> ; предполагается, что mpt70 играет роль в защите микобактерий от иммунного ответа хозяина путем модуляции взаимодействия с клетками макроорганизма [180; 181].	
rv3659c	2,02	2,11	1,70	2,14	Консервативный белок с неизвестной функцией.	

Анализ дифференциальной экспрессии продемонстрировал, что существуют гены, экспрессия которых отличается между двумя штаммами в каждом конкретном стрессе, а также гены, дифференциальная экспрессия которых была установлена в 2 или 3 различных состояниях (Рисунок 45). Это наблюдение позволяет предположить, что конкретные гены, регулируемые MTS1338, могут зависеть от контекста клеточного состояния. В различных стрессовых условиях активны разные сигнальные пути и транскрипционные программы [182]. Таким образом, гиперэкспрессия MTS1338 может приводить к влиянию последней на разные мишени в зависимости от конкретных условий, что, в свою очередь, будет выражаться в дифференциальной экспрессии разных генов лля различных состояний. Списки лифференциально экспрессированных генов, полученных при сравнении штамма с гиперэкспрессией (mtb pMV261 1338) относительно контрольного штамма (mtb pMV261 E) для каждого из исследуемых состояний приведены в Приложении С.

Рисунок 45 – Диаграмма Венна, отображающая общие и уникальные гены, идентифицированные как дифференциально экспрессированные в различных состояниях

Необходимо также отметить, что, влияние каждого отдельного стресса на транскриптом *M. tuberculosis* сильнее, чем влияние фактора гиперэкспрессии MTS1338, что может быть продемонстрировано с помощью анализа главных компонент (Рисунок 46). Выявлена кластеризация проб как по фактору штамма, так и по фактору условий, в которых находились бактерий, но основной вклад в вариабельность данных вносят именно условия, при которых росли штаммы.

Рисунок 46 – Диаграмма двух главных компонент данных РНК-секвенирования при различных условиях; круглыми маркерами обозначены данные для проб с гиперэкспрессией МТS1338, треугольными - контрольные пробы

Таким образом, можно предположить, что малая РНК МТS1338 служит одним из активаторов адаптивных процессов в бактерии и контролирует экспрессию специфичных генов, участвующих в ответе на различные стрессы, что подготавливает клетку к выживанию в агрессивной среде внутри макрофага. Подтверждением этой гипотезы является также тот факт, что более 50 процентов дифференциально экспрессированных генов в каждом из сравнений совпадает с генами, которые активируется при заражении *M. tuberculosis* культуры перитонеальных макрофагов [183].

3.3.6 Гетерологичная транскрипция малой РНК *M. tuberculosis* MTS1338 в *M. smegmatis* приводит к ингибированию роста

Малая РНК МТS1338 присутствует только у микобактерий, относящихся к туберкулезному комплексу и консервативна у всех его видов; у непатогенного вида микобактерий *M. smegmatis* нет генов, гомологичных гену MTS1338. Тем не менее, нами было найдено, что гетерологичная транскрипция MTS1338 в *M. smegmatis* с помощью рекомбинантной плазмиды pMV261-MTS1338 способствует появлению у штамма ряда фенотипических проявлений, схожих с эффектом гиперэкспрессии MTS1338 в *M. tuberculosis*. А именно, транскрипция MTS1338 (штамм msm_pMV261_1338) замедляет скорость роста *M. smegmatis* по сравнению с контрольным штаммом (msm_pMV261_E), что выражается в отставании кривой роста штамма

105

msm_pMV261_1338 в жидкой питательной среде (Рисунок 47). Аналогичный результат был впервые описан для *M. tuberculosis* в 2015 году [155]; его повторение в рамках модели *M. smegmatis* косвенно свидетельствует о том, что механизм действия нкРНК MTS1338 может отличаться от классических механизмов бактериальных транс-кодируемых малых РНК.

Рисунок 47 – Кривая роста транскрибирующего MTS1338 (msm_pMV261_1338) и контрольного (msm_pMV261_E) штаммов *M. smegmatis* в жидкой среде; **p < 0,01

3.3.7 Гетерологичная транскрипция малой РНК *M. tuberculosis* MTS1338 стимулирует выживание *M. smegmatis* при заражении *ex vivo*

Для того, чтобы выяснить, вызывает ли транскрипция MTS1338 в *M. smegmatis* какие-либо физиологические эффекты, подобные тем, которые гиперэкспрессия этой нкРНК вызывает в *M. tuberculosis*, нами было решено проанализировать выживаемость созданных штаммов (msm_pMV261_1338 и msm_pMV261_E) в условиях инфекции *ex vivo*.

Линию макрофагов мыши RAW264.7 заражали транскрибирующим MTS1338 (msm_pMV261_1338) и контрольным штаммами (msm_pMV261_E) *M. smegmatis*. Через 3 и 24 часа после инфекции заражение останавливали, разрушали эукариотические клетки и высевали

биоматериал на твердую агаризованную среду. Оценку выживаемости производили путем подсчета КОЕ полученных в результате высева.

Эксперимент выявил статистически значимое повышение выживаемости штамма msm_pMV261_1338 по сравнению с контрольным штаммом, которое наблюдалось в обеих исследуемых временных точках (Рисунок 48). Оценка транскрипции MTS1338 подтвердила наличие транскрипта этой малой РНК в пробах, которые были заражены штаммом msm_pMV261_1338 (Приложение Т). Эти данные впервые показывают, что транскрипция MTS1338 не только способна повышать выживаемость *M. tuberculosis*, но и обладает аналогичным действием на *M. smegmatis*.

Рисунок 48 – Выживание транскрибирующего MTS1338 (msm_pMV261_1338) и контрольного (msm_pMV261_E) штаммов *M. smegmatis* при заражении макрофагов линии RAW264.7 (MII 1:10); КОЕ в нулевой точке принято за 100%; *p < 0,05

3.3.8 Гетерологичная транскрипция MTS1338 в *M. smegmatis* ингибирует нормальное созревание фаголизосом

Инфицированные макрофаги уничтожают бактерии в процессе фагоцитоза: они распознают бактериальные клетки с помощью набора специальных рецепторов, поглощают их и лизируют [184]. Однако *M. tuberculosis* выработал молекулярные механизмы, останавливающие образование фаголизосом [185]. Для того, чтобы изучить, одинаково ли идет процесс образования

фаголизосом в случае транскрибирующего MTS1338 и контрольного штаммов M. smegmatis, была оценена колокализация микобактерий и маркера созревания фагосом LAMP-1 [186]. Для визуальной оценки бактерий, оба штамма предварительно были трансформированы генноинженерной конструкцией для конститутивной экспрессии зеленого флуоресцентного белка GFP (pMV261-GFP). Процесс образования фаголизосом был зафиксирован при заражении каждым из транскрибирующего нкРНК штаммов. Однако, В случае штамма, MTS1338 (msm GFP pMV261 1338), колокализация LAMP-1 и микобактерий была статистически значимо снижена по сравнению с контрольным штаммом (msm GFP pMV261 E) (Рисунок 49, Рисунок 50).

LAMP-1
Image: second sec

Рисунок 49 – Фотографии, полученные с помощью флюоресцентного микроскопа, демонстрирующие инфекцию макрофагов линии RAW 264.7 двумя штаммами *M. smegmatis*: транскрибирующим MTS1338 (msm_GFP_pMV261_1338) и контрольным (msm_GFP_pMV261_E); оба штамма экспрессируют GFP (зеленый цвет); ядра макрофагов окрашены голубым. LAMP-1 (верхняя панель) и LysoTracker (нижняя панель) окрашены красным цветом; колокализация микобактерий и LAMP-1/кислых компартментов окрашена оранжевым
Дополнительным экспериментом, направленным на верификацию полученных результатов, стало окрашивание кислых компартментов эукариотических клеток флуоресцентным красителем (LysoTracker) при аналогичном заражении указанными штаммами *M. smegmatis*. В результате также было показано снижение колокализации микобактерий, транскрибирующих MTS1338 и фаголизосом (Рисунок 50).

Рисунок 50 – Количественная оценка колокализации микобактерий штаммов msm_GFP_pMV261_1338 и msm_GFP_pMV261_E c LAMP-1 и LysoTracker; *p < 0,05

Таким образом, транскрипция MTS1338 в *М. smegmatis*, препятствует нормальному созреванию фаголизосом путем снижения уровня закисления этих органелл. По всей видимости, именно этот процесс обеспечивает повышенную устойчивость транскрибирующего MTS1338 штамма при заражении макрофагов.

3.3.9 Малая РНК MTS1338 модулирует экспрессию цитокинов в инфицированных макрофагах

Мы также проверили влияние транскрипции MTS1338 в *M. smegmatis* на баланс цитокинов при инфекции. Для этого была оценена транскрипция генов нескольких провоспалительных (TNFα, IL-1β, IL-6, IL-12) и противовоспалительных цитокинов (IL-4, IL-10, TGF-β), которые часто обсуждаются в контексте туберкулеза [187; 188].

В ходе эксперимента макрофаги линии RAW264.7 были заражены штаммом *M. smegmatis*, транскрибирующим малую PHK MTS1338 (msm pMV261 1338) и контрольным штаммом

(msm_pMV261_E). В определенных временных точках (4 и 24 часа), эксперимент останавливали, из культуры выделяли РНК и оценивали транскрипцию генов методов количественной ОТ-ПЦР.

Транскрипция *IL-4* не была детектирована ни в одном из образцов макрофагов. Транскрипция цитокинов *IL-1β*, *IL10*, *IL12*, *TGF-β* и *TNF-α* была статистически значимо меньше в макрофагах, инфицированных штаммом *M. smegmatis*, транскрибирующим MTS1338 в обеих временных точках. Транскрипция *IL-6*, напротив, была повышена в культуре, зараженной транскрибирующим MTS1338 штаммом, при почти недетектируемом уровне в случае контрольного штамма (Рисунок 51).

Рисунок 51 – Транскрипция цитокинов относительно бета-актина в макрофагах, инфицированных штаммом *M. smegmatis*, транскрибирующим MTS1338 (msm_pMV261_1338), и контрольным штаммом (msm_pMV261_E); *p < 0,05, **p < 0,01, ***p < 0,001, ****p < 0,0001

3.3.10 MTS1338 влияет на экспрессию транскрипционных факторов *M. smegmatis* и белков, вовлеченных в ремоделинг клеточной стенки

Для того, чтобы найти факторы, приведшие к обнаруженным эффектам транскрипции MTS1338 на *M. smegmatis*, был проведен масс-спектрометрический анализ протеомов штамма *M. smegmatis*, транскрибирующего MTS1338 (msm_pMV261_1338) и контрольного штамма (msm_pMV261_E). Среди всего массива идентифицированных белков (3602 белка), 109 были уникальными для штамма, транскрибирующего MTS1338, и 117 для контрольного штамма (Приложение У).

Среди уникальных для транскрибирующего MTS1338 штамма белков был обнаружен целый ряд транскрипционных факторов, таких как LacI, MarR, TetR, GntR, Ethr, FurA, DeoR и несколько регуляторов семейства WhiB. Также была зафиксирована экспрессия SigE, альтернативного сигма-фактор с экстраклеточной функцией, вклад которого в вирулентность был показан для *M. tuberculosis* [189].

Были обнаружены 2 из 10 компонентов системы секреции ESX-3, EccA3 и EccE3. Остальные компоненты этой системы не были детектированы ни в одном из штаммов. Остальные белки, которые были индуцированы транскрипцией MTS1338, включают в себя несколько членов семейства цитохромов P450, которые необходимы для выживания *M. tuberculosis* и вовлечены в регуляцию метаболизма стеролов [134]. Также были обнаружены белки синтеза микобактериальной клеточной стенки, такие как поликетидсинтазы, PKS_KS-домен-содержащий белок и синтаза микоцерозной кислоты.

Среди белков, которые были детектированы только в контрольном штамме, были в основном транскрипционные факторы (ArsR, GntR, HxlR, IclR, LacI, LuxR, LysR, PadR, TetR, и семейство XRE), транспортеры (такие, как коимпортер пролина и натрия), консервативные трансмембранные белки и ряд других трансмембранных белков.

3.3.11 MTS1338 стимулирует секрецию белков, вовлеченных в механизмы вирулентности и клеточной проницаемости

У микобактерий известно большое число секретируемых белков, которые участвуют в модуляции иммунного ответа организма хозяина. Для того, чтобы определить, влияет ли MTS1338 на секрецию каких-либо белков, был проведен масс-спектрометрической анализ секретомов обоих штаммов. Было обнаружено, что в секретоме штамма *M. smegmatis*,

транскрибирующего MTS1338 (msm_pMV261_1338), есть 10 белков, которых нет у контрольного штамма (msm_pMV261_E). Среди них:

- Белок, содержащий домен SGNH_hydro является гомологом Rv0518 *M. tuberculosis*, который принадлежит к семейству липаз. Было показано, что экспрессия *rv0518* в *M. smegmatis* изменяет морфологию клетки и состав липидов клеточной стенки, увеличивая в ней долю димиколатов трегалозы. Это влияет на устойчивость бактерии к внешним, внутриклеточным и антибиотическим стрессам, повышая выживаемость микобактерий при заражении [135].
- Белок Dacb2 предполагаемая D-аланил-D-аланин карбоксипептидаза; эти белки играют важнейшую роль в пептидогликановой сшивке и контролируют экспрессию поверхностных гликопептидолипидов, которые могут участвовать в маскировке фосфатидил-мио-инозитол маннозидов от распознавания Toll-подобным рецептором 2 [136].
- Секретируемый белок A0R455, содержащий трансгликозилазный домен, гомологичен белку RpfA *M. tuberculosis*, так называемому «фактору ресусцитации», который стимулирует выход микобактерий из покоящегося состояния [99].
- Антиген МТВ48 является гомологом белка EspB *M. tuberculosis*, который секретируется с помощью ESX-1 и является фактором вирулентности, который способен влиять на механизмы клеточной гибели организма-хозяина [137].

Среди белков, секреция которых была ингибирована в штамме с транскрипцией MTS1338, можно выделить:

- Секретирующийся антиген 85-С FbpC это член комплекса антигенов 85 (Ag85), которые отвечают за аффинность микобактерий к фибронектину и обладают миколилтрансферазной активностью [74] *M. smegmatis* имеет 5 миколилтрансфераз: FbpA, FbpB, FbpC, и два гомолога FbpD, которые обладают функциональной избыточностью. FbpA и FbpB экспрессируются на низком уровне, как в контрольном, так и в экспрессирующем MTS1338 штаммах, в то время как экспрессия обоих FbpD и FbpC присутствует только в контрольном штамме.
- Порин MspA, является главным порином *M. smegmatis*. Он формирует заполненный водой канал, который способствует проницаемости гидрофильных молекул, таких как катионы, аминокислоты и фосфаты [138]. Поскольку поступление питательных веществ, обеспечиваемых этим порином, является одним из главных факторов, определяющих скорость роста *M. smegmatis* [139], ингибирование его секреции, опосредованное

MTS1338, может объяснять замедление роста штамма, транскрибирующего эту малую РНК (Рис. 47).

Полные списки белков, по которым различаются секретомы обоих штаммов приведены в Приложении Ф.

Обнаруженные между штаммами различия в экспрессии белков были подтверждены на транскриптомном уровне с помощью количественной ПЦР нескольких случайно выбранных генов. Проверка была выполнена в экспоненциальной (ОП₆₀₀ = 0,8) и стационарной (ОП₆₀₀ = 2,0) фазах роста (Приложение X).

Заключение

Малые некодирующие РНК бактерий представляют собой основной регуляторный элемент, участвующий в различных биологических процессах на посттранскрипционном уровне. В условиях, когда бактерии сталкиваются с разнообразными стрессовыми факторами, способность быстро и гибко реагировать на изменения окружающей среды становится ключевой для их выживания. Именно малые нкРНК, как регуляторы экспрессии генов, играют центральную роль в этом адаптивном ответе, обеспечивая приспособление бактерий к новым условиям.

Одним из наиболее распространенных и принципиальных вызовов, с которыми сталкиваются микроорганизмы во многих экосистемах, является холодовой стресс. Низкие температуры вызывают ряд неблагоприятных изменений на клеточном уровне, включая замедление метаболических процессов, изменение текучести мембраны и изменение стабильности вторичных структур РНК. Для выживания в условиях холодового стресса бактериям необходимо быстро активировать системы адаптации, которые помогут им восстановить гомеостаз и продолжить нормальное функционирование. В нашей работе было выявлено 43 цис-кодируемых и 13 транс-кодируемых регуляторных РНК M. smegmatis, которые могут принимать участие в адаптации к холодовому стрессу; ранее из этого набора было описано всего 5 нкРНК. Мы также провели полнотранскриптомное профилирование M. smegmatis в динамике адаптации к низким температурам и описали протекающие процессы. С помощью корреляционного анализа и биоинформатического предсказания были выявлены предполагаемые мРНК-мишени идентифицированных нкРНК и определены потенциальные биологические пути, в которых они могут участвовать. В совокупности, данный этап работы представляет собой первое систематическое исследование адаптации микобактерий к холодовому стрессу на транскриптомном уровне.

Другими распространенными стрессами, с которыми сталкиваются как патогенные, так и непатогенные микобактерии, являются окислительный и кислотный стрессы. Ранее было показано, что одна из самых распространенных известных микобактериальных нкРНК, F6 может принимать участие в адаптации *M. tuberculosis* к этим неблагоприятным условиям [88]. Нами была поставлена изучить роль этой регуляторной РНК у *M. smegmatis*, для чего был создан мутант с делецией гена F6, проведено его транскриптомное профилирование методом RNA-seq и изучены фенотипические особенности в ряде *in vitro* экспериментов. Было показано, что F6 действительно принимает участие в адаптации к окислительному стрессу: под негативным контролем этой нкРНК находятся ряд генов, которые обеспечивают повышенное выживание штамма Δ F6 в присутствии H₂O₂ по сравнению со штаммом дикого типа. Также нами было

доказано, что мРНК одного из генов, которые повысили свою экспрессию при делеции F6, $MSMEG_4640$, является прямой мишенью исследуемой регуляторной PHK. Ген $MSMEG_4640$ кодирует фактор ресусцитации RpfE2, повышенная экспрессия которого нарушает способность мутантного штамма *M. smegmatis* к переходу в некультивируемое состояние в модели покоя, что необходимо для переживания ряда неблагоприятных условий. Таким образом, F6 представляет собой первый пример микобактериальной нкPHK, функция которой состоит в регуляции перехода в покоящееся состояние.

Малые некодирующие РНК также могут являться факторами вирулентности, играя центральную роль в адаптации к макрофагальным стрессам. MTS1338 представляет собой некодирующую транскрибируемую патогенными микобактериями малую РНК, при инфицировании *in vivo* и *in vitro* в активированных макрофагах. В данной работе была продемонстрирована важная роль MTS1338 в контексте адаптации к различным стрессам. Мы показали, что основным триггером транскрипции MTS1338 ex vivo является NO. MTS1338 повышает выживание M. tuberculosis в условиях кислотного, нитрозативного и окислительного стрессов, и контролирует экспрессию ряда важных для адаптации транскрипционных факторов. Неожиданным и новым в области исследования некодирующих РНК результатом является то, что гетерологичная транскрипция MTS1338 в непатогенном *M. smegmatis* повышает выживание этой бактерии в условиях инфекции ex vivo. Это сопровождается таким же замедлением скорости клеточного деления, как и при гиперэкспрессии MTS1338 в M. tuberculosis. Результаты вышеприведенных экспериментов свидетельствуют о том, что гетерологичная транскрипция MTS1338 в *M. smegmatis* приводит к замедлению созревания фаголизосом, модуляции экспрессии ряда цитокинов и появлению потенциальных факторов вирулентности в секретоме и протеоме бактерии. Выявленные эффекты дают основания полагать, что механизм действия MTS1338 не является классическим, и не опирается (или реализуется лишь в некоторых случаях) на конкретные мРНК мишени.

Выводы

1. Выявлено 56 малых некодирующих РНК *M. smegmatis*, предположительно участвующих в адаптации бактерии к низким температурам.

2. Малая некодирующая РНК F6 *M. smegmatis* регулирует транскриптомный ответ микобактерии на окислительный стресс.

3. Транскрипция F6 необходима для перехода *M. smegmatis* в некультивируемое состояние; найдена молекулярная мишень F6 - 5'-нетранслируемая область мРНК гена фактора ресусцитации MSMEG_4640.

4. На животной модели инфекции показано, что малая некодирующая РНК MTS1338 *M. tuberculosis* активно транскрибируется в зараженной легочной ткани *in vivo* на стадии хронической инфекции. Главным индуктором транскрипции MTS1338 является NO, продуцируемый индуцибельной синтазой оксида азота iNOS.

5. MTS1338 участвует в адаптации *M. tuberculosis* к стрессовым условиям, моделирующим инфекцию *in vitro*, путем активации экспрессии стресс-специфичных регуляторов транскрипции.

6. Гетерологичная транскрипция РНК MTS1338 в непатогенной бактерии *M. smegmatis* приводит к изменениям в экспрессии ряда транскрипционных факторов, компонентов клеточной стенки и секретирующихся потенциальных факторов вирулентности. Рекомбинантный штамм *M. smegmatis* приобретает ряд свойств *M. tuberculosis* при инфекции в культуре макрофагов.

Список литературы

1. DiChiara, J.M. Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis / DiChiara J.M., Contreras-Martinez L.M., Livny J., Smith D., McDonough K.A., Belfort M. // Nucleic Acids Research – 2010. – T. $38 - N_{2} 12 - C.4067-4078$.

2. Tsai, C.-H. Identification of Novel sRNAs in Mycobacterial Species / Tsai C.-H., Baranowski C., Livny J., McDonough K.A., Wade J.T., Contreras L.M. // PLOS ONE – 2013. – T. 8 – № 11 – C.e79411.

3. Chen, Y. Small RNA Profiling in Mycobacterium Provides Insights Into Stress Adaptability / Chen Y., Zhai W., Zhang K., Liu H., Zhu T., Su L., Bermudez L., Chen H., Guo A. // Frontiers in Microbiology – 2021. – T. 12.

4. Gerrick, E.R. Small RNA profiling in Mycobacterium tuberculosis identifies MrsI as necessary for an anticipatory iron sparing response / Gerrick E.R., Barbier T., Chase M.R., Xu R., François J., Lin V.H., Szucs M.J., Rock J.M., Ahmad R., Tjaden B., Livny J., Fortune S.M. // Proceedings of the National Academy of Sciences – 2018. - T. 115 - N 25 - C.6464 - 6469.

5. Taneja, S. On a stake-out: Mycobacterial small RNA identification and regulation / Taneja S., Dutta T. // Non-coding RNA Research $-2019. - T. 4 - N_{2} 3 - C.86-95$.

6. Coskun, F.S. Small RNAs Asserting Big Roles in Mycobacteria / Coskun F.S., Płociński P., Oers N.S.C. van // Non-Coding RNA – 2021. – T. 7 – № 4 – C.69.

7. The top 10 causes of death [Электронный ресурс]. URL: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed: 28.06.2023).

8. Pepperell, C.S. Evolution of Tuberculosis Pathogenesis / Pepperell C.S. // Annual Review of Microbiology -2022. -T. $76 - N_{0} 1 - C.661-680$.

9. Boutet, E. Small RNAs beyond Model Organisms: Have We Only Scratched the Surface? / Boutet E., Djerroud S., Perreault J. // International Journal of Molecular Sciences $-2022. -T. 23 - N \ge 8 - C.4448.$

10. Felden, B. Bacterial Adaptation to Antibiotics through Regulatory RNAs / Felden B., Cattoir V. // Antimicrobial Agents and Chemotherapy -2018. -T. $62 - N_{\odot} 5 - C.e02503-17$.

11. Gottesman, S. Small RNA Regulators and the Bacterial Response to Stress / Gottesman S., McCullen C., Guillier M., Vanderpool C., Majdalani N., Benhammou J., Thompson K., FitzGerald P., Sowa N., FitzGerald D. // Cold Spring Harbor symposia on quantitative biology – 2006. – T. 71 – C.1–11.

12. Altuvia, S. Identification of bacterial small non-coding RNAs: experimental approaches / Altuvia S. // Current Opinion in Microbiology $-2007. - T. 10 - N_{\odot} 3 - C.257-261.$

13. Croucher, N.J. Studying bacterial transcriptomes using RNA-seq / Croucher N.J., Thomson N.R. // Current Opinion in Microbiology $-2010. - T. 13 - N_{\odot} 5 - C.619-624$.

14. Saliba, A.-E. New RNA-seq approaches for the study of bacterial pathogens / Saliba A.-E., C Santos S., Vogel J. // Current Opinion in Microbiology – 2017. – T. 35 – C.78–87.

15. Sridhar, J. Computational Small RNA Prediction in Bacteria / Sridhar J., Gunasekaran P. // Bioinformatics and Biology Insights – 2013. – T. 7 – C.BBI.S11213.

16. Fremin, B.J. Comparative genomics identifies thousands of candidate structured RNAs in human microbiomes / Fremin B.J., Bhatt A.S. // Genome Biology $-2021. - T. 22 - N_{2} 1 - C.100.$

17. Pichon, C. Small RNA gene identification and mRNA target predictions in bacteria / Pichon C., Felden B. // Bioinformatics $-2008. - T. 24 - N_{2} 24 - C.2807 - 2813$.

18. Barquist, L. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies / Barquist L., Vogel J. // Annual Review of Genetics – 2015. – T. 49 – C.367–394.

19. Sharma, C.M. Experimental approaches for the discovery and characterization of regulatory small RNA / Sharma C.M., Vogel J. // Current Opinion in Microbiology $-2009. - T. 12 - N \le 5 - C.536 - 546.$

20. Depardieu, F. Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels / Depardieu F., Bikard D. // Methods – 2020. – T. 172 – C.61–75.

21. Vogel, J. Target identification of small noncoding RNAs in bacteria / Vogel J., Wagner E.G.H. // Current Opinion in Microbiology – 2007. – T. $10 - N_{2} - C.262$ –270.

22. Mann, B. Control of Virulence by Small RNAs in Streptococcus pneumoniae / Mann B., Opijnen T. van, Wang J., Obert C., Wang Y.-D., Carter R., McGoldrick D.J., Ridout G., Camilli A., Tuomanen E.I., Rosch J.W. // PLOS Pathogens – 2012. – T. $8 - N_{\odot} 7 - C.e1002788$.

23. Morita, T. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs / Morita T., Maki K., Aiba H. // Genes & Development – 2005. – T. 19 – N_{2} 18 – C.2176–2186.

24. Jazurek, M. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases / Jazurek M., Ciesiolka A., Starega-Roslan J., Bilinska K., Krzyzosiak W.J. // Nucleic Acids Research - 2016. – T. 44 – N_{2} 19 – C.9050–9070.

25. Hafner, M. CLIP and complementary methods / Hafner M., Katsantoni M., Köster T., Marks J., Mukherjee J., Staiger D., Ule J., Zavolan M. // Nature Reviews Methods Primers $-2021. - T. 1 - N \ge 1 - C.1 - 23$.

26. Zambelli, F. RIP-Seq data analysis to determine RNA-protein associations / Zambelli F., Pavesi G. // Methods in Molecular Biology (Clifton, N.J.) – 2015. – T. 1269 – C.293–303.

27. Eichner, H. The emerging role of bacterial regulatory RNAs in disease / Eichner H., Karlsson J., Loh E. // Trends in Microbiology $-2022. - T. 30 - N \ge 10 - C.959-972.$

28. Gerhart, E. Noncoding RNAs Encoded by Bacterial Chromosomes / Gerhart E., Wagner E.G.H., Vogel Prof. Dr J. – 2003.

29. Saberi, F. Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications / Saberi F., Kamali M., Najafi A., Yazdanparast A., Moghaddam M.M. // Cellular & Molecular Biology Letters -2016. -T. 21 - N 1 - C.6.

30. Kawano, M. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin / Kawano M., Aravind L., Storz G. // Molecular Microbiology – 2007. – T. $64 - N_{2} 3 - C.738 - 754$.

31. Watkins, D. Regulatory roles of small RNAs in prokaryotes: parallels and contrast with eukaryotic miRNA / Watkins D., Arya D.P. // Non-coding RNA Investigation – 2019. – T. 3 – N_{2} 0.

32. Morfeldt, E. Activation of alpha-toxin translation in Staphylococcus aureus by the transencoded antisense RNA, RNAIII / Morfeldt E., Taylor D., Gabain A. von, Arvidson S. // The EMBO journal – 1995. – T. 14 – N_{0} 18 – C.4569–4577.

33. Novick, R.P. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. / Novick R.P., Ross H.F., Projan S.J., Kornblum J., Kreiswirth B., Moghazeh S. // The EMBO Journal – 1993. – T. $12 - N \ge 10 - C.3967 - 3975$.

34. Chevalier, C. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation / Chevalier C., Boisset S., Romilly C., Masquida B., Fechter P., Geissmann T., Vandenesch F., Romby P. // PLoS pathogens – 2010. – T. $6 - N \circ 3 - C.e1000809$.

35. Huntzinger, E. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression / Huntzinger E., Boisset S., Saveanu C., Benito Y., Geissmann T., Namane A., Lina G., Etienne J., Ehresmann B., Ehresmann C., Jacquier A., Vandenesch F., Romby P. // The EMBO journal – 2005. – T. $24 - N_{\odot} 4 - C.824-835$.

36. Papenfort, K. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis / Papenfort K., Sun Y., Miyakoshi M., Vanderpool C.K., Vogel J. // Cell – 2013. – T. 153 – N_{2} 2 – C.426–437.

37. Kawamoto, H. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq / Kawamoto H., Koide Y., Morita T., Aiba H. // Molecular Microbiology -2006. -T. $61 - N_{\odot} 4 - C.1013 - 1022$.

38. Vanderpool, C.K. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system / Vanderpool C.K., Gottesman S. // Molecular Microbiology $-2004. - T. 54 - N_{\rm O} 4 - C.1076-1089.$

39. Wadler, C.S. A dual function for a bacterial small RNA: SgrS performs base pairingdependent regulation and encodes a functional polypeptide / Wadler C.S., Vanderpool C.K. // Proceedings of the National Academy of Sciences of the United States of America – 2007. – T. 104 – N_{2} 51 – C.20454–20459.

40. Giangrossi, M. A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri / Giangrossi M., Prosseda G., Tran C.N., Brandi A., Colonna B., Falconi M. // Nucleic Acids Research – 2010. – T. $38 - N_{2} 10 - C.3362 - 3375$.

41. Udekwu, K.I. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA / Udekwu K.I., Darfeuille F., Vogel J., Reimegård J., Holmqvist E., Wagner E.G.H. // Genes & Development – 2005. – T. 19 – N $^{\circ}$ 19 – C.2355–2366.

42. Leiva, L.E. Regulation of Leaderless mRNA Translation in Bacteria / Leiva L.E., Katz A. // Microorganisms – 2022. – T. $10 - N_{2} 4 - C.723$.

43. Sharma, C.M. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites / Sharma C.M., Darfeuille F., Plantinga T.H., Vogel J. // Genes & Development – 2007. – T. $21 - N_{\odot} 21 - C.2804 - 2817$.

44. Pfeiffer, V. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation / Pfeiffer V., Papenfort K., Lucchini S., Hinton J.C.D., Vogel J. // Nature Structural & Molecular Biology – 2009. – T. $16 - N_2 8 - C.840-846$.

45. Bandyra, K.J. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E / Bandyra K.J., Said N., Pfeiffer V., Górna M.W., Vogel J., Luisi B.F. // Molecular Cell – 2012. – T. 47 – N 6 – C.943–953.

46. Vecerek, B. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding / Vecerek B., Moll I., Bläsi U. // The EMBO journal – 2007. – T. 26 – № 4 – C.965–975.

47. Sonnleitner, E. The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal / Sonnleitner E., Gonzalez N., Sorger-Domenigg T., Heeb S., Richter A.S., Backofen R., Williams P., Hüttenhofer A., Haas D., Bläsi U. // Molecular Microbiology – 2011. – T. $80 - N_{\rm P} 4 - C.868-885$.

48. Prévost, K. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage / Prévost K., Desnoyers G., Jacques J.-F., Lavoie F., Massé E. // Genes & Development – 2011. - T. 25 - N = 4 - C.385 - 396.

49. Brownlee, G.G. Sequence of 6S RNA of E. coli / Brownlee G.G. // Nature New Biology – 1971. – T. 229 – No 5 – C.147–149.

50. Wassarman, K.M. 6S RNA regulates E. coli RNA polymerase activity / Wassarman K.M., Storz G. // Cell – 2000. – T. 101 – No 6 – C.613–623.

51. Li, Z. 6S-1 RNA Contributes to Sporulation and Parasporal Crystal Formation in Bacillus thuringiensis / Li Z., Zhu L., Yu Z., Liu L., Chou S.-H., Wang J., He J. // Frontiers in Microbiology – 2020. – T. 11 – C.604458.

52. Wassarman, K.M. Synthesis-mediated release of a small RNA inhibitor of RNA polymerase / Wassarman K.M., Saecker R.M. // Science (New York, N.Y.) – 2006. – T. $314 - N_{2} 5805 - C.1601 - 1603$.

53. Beckmann, B.M. A pRNA-induced structural rearrangement triggers 6S-1 RNA release from RNA polymerase in Bacillus subtilis / Beckmann B.M., Hoch P.G., Marz M., Willkomm D.K., Salas M., Hartmann R.K. // The EMBO Journal – 2012. – T. $31 - N_{\odot} 7 - C.1727 - 1738$.

54. Cavanagh, A.T. 6S RNA, a Global Regulator of Transcription in *Escherichia coli*, *Bacillus subtilis*, and Beyond / Cavanagh A.T., Wassarman K.M. // Annual Review of Microbiology $-2014. - T. 68 - N_{2} 1 - C.45-60.$

55. Liu, M.Y. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli / Liu M.Y., Gui G., Wei B., Preston J.F., Oakford L., Yüksel U., Giedroc D.P., Romeo T. // The Journal of Biological Chemistry – 1997. – T. 272 – № 28 – C.17502–17510.

56. Baker, C.S. CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli / Baker C.S., Morozov I., Suzuki K., Romeo T., Babitzke P. // Molecular Microbiology -2002. - T. 44 - N = 6 - C.1599 - 1610.

57. Suzuki, K. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli / Suzuki K., Wang X., Weilbacher T., Pernestig A.-K., Melefors O., Georgellis D., Babitzke P., Romeo T. // Journal of Bacteriology – 2002. – T. 184 – N 18 – C.5130–5140.

58. Lalaouna, D. GcvB small RNA uses two distinct seed regions to regulate an extensive targetome / Lalaouna D., Eyraud A., Devinck A., Prévost K., Massé E. // Molecular Microbiology – 2019. - T. 111 - N = 2 - C.473 - 486.

59. Miyakoshi, M. Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA / Miyakoshi M., Chao Y., Vogel J. // The EMBO journal – 2015. – T. $34 - N_{\odot} 11 - C.1478 - 1492$.

60. Figueroa-Bossi, N. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target / Figueroa-Bossi N., Valentini M., Malleret L., Fiorini F., Bossi L. // Genes & Development – 2009. – T. $23 - N_{2} 17 - C.2004 - 2015$.

61. Bassetti, M. How to manage Pseudomonas aeruginosa infections / Bassetti M., Vena A., Croxatto A., Righi E., Guery B. // Drugs in Context – 2018. – T. 7 – C.212527.

62. Koeppen, K. A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles / Koeppen K., Hampton T.H., Jarek M., Scharfe M., Gerber S.A., Mielcarz D.W., Demers E.G., Dolben E.L., Hammond J.H., Hogan D.A., Stanton B.A. // PLoS Pathogens – 2016. – T. $12 - N_{\odot} 6$ – C.e1005672.

63. Habier, J. Extraction and Analysis of RNA Isolated from Pure Bacteria-Derived Outer Membrane Vesicles / Habier J., May P., Heintz-Buschart A., Ghosal A., Wienecke-Baldacchino A.K., Nolte-'t Hoen E.N.M., Wilmes P., Fritz J.V. // Methods in Molecular Biology (Clifton, N.J.) – 2018. – T. 1737 – C.213–230.

64. Pagliuso, A. An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling / Pagliuso A., Tham T.N., Allemand E., Robertin S., Dupuy B., Bertrand Q., Bécavin C., Koutero M., Najburg V., Nahori M.-A., Tangy F., Stavru F., Bessonov S., Dessen A., Muchardt C., Lebreton A., Komarova A.V., Cossart P. // Cell Host & Microbe – 2019. – T. 26 - N = 6 - C.823 - 835.e11.

65. Gu, H. Salmonella produce microRNA-like RNA fragment Sal-1 in the infected cells to facilitate intracellular survival / Gu H., Zhao C., Zhang T., Liang H., Wang X.-M., Pan Y., Chen X., Zhao Q., Li D., Liu F., Zhang C.-Y., Zen K. // Scientific Reports $-2017. - T. 7 - N_{\odot} 1 - C.2392$.

66. Ruby, E.G. The Vibrio fischeri-Euprymna scolopes Light Organ Association: Current Ecological Paradigms / Ruby E.G., Lee K.-H. // Applied and Environmental Microbiology – 1998. – T. $64 - N_{\odot} 3 - C.805 - 812$.

67. Moriano-Gutierrez, S. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses / Moriano-Gutierrez S., Bongrand C., Essock-Burns T., Wu L., McFall-Ngai M.J., Ruby E.G. // PLoS biology – 2020. – T. $18 - N_{2} 11 - C.e3000934$.

68. Luna-Acosta, A. Recent findings on phenoloxidases in bivalves / Luna-Acosta A., Breitwieser M., Renault T., Thomas-Guyon H. // Marine Pollution Bulletin $-2017. -T. 122 - N \ge 1-2 - C.5-16$.

69. Engebrecht, J. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri / Engebrecht J., Nealson K., Silverman M. // Cell – 1983. – T. 32 – № 3 – C.773–781.

70. Vogel, J. Hfq and its constellation of RNA / Vogel J., Luisi B.F. // Nature Reviews. Microbiology $-2011. - T.9 - N_{2} 8 - C.578 - 589$.

71. Updegrove, T.B. Hfq: the flexible RNA matchmaker / Updegrove T.B., Zhang A., Storz G. // Current Opinion in Microbiology – 2016. – T. 30 – C.133–138.

72. Santiago-Frangos, A. Hfq chaperone brings speed dating to bacterial sRNA / Santiago-Frangos A., Woodson S.A. // Wiley interdisciplinary reviews. RNA – 2018. – T. 9 – N_{2} 4 – C.e1475.

73. Kreth, J. Regulatory RNAs☆ / под ред. Т.М. Schmidt. Oxford: Academic Press, 2019. – 62– 84с.

74. Santiago-Frangos, A. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA / Santiago-Frangos A., Kavita K., Schu D.J., Gottesman S., Woodson S.A. // Proceedings of the National Academy of Sciences of the United States of America – 2016. – T. 113 – N 41 – C.E6089–E6096.

75. Smirnov, A. Grad-seq guides the discovery of ProQ as a major small RNA-binding protein / Smirnov A., Förstner K.U., Holmqvist E., Otto A., Günster R., Becher D., Reinhardt R., Vogel J. // Proceedings of the National Academy of Sciences $-2016. - T. 113 - N \cdot 41 - C.11591 - 11596.$

76. Melamed, S. RNA-RNA Interactomes of ProQ and Hfq Reveal Overlapping and Competing Roles / Melamed S., Adams P.P., Zhang A., Zhang H., Storz G. // Molecular Cell – 2020. – T. 77 – N_{2} 2 – C.411- 425.e7.

77. Holmqvist, E. Global Maps of ProQ Binding In Vivo Reveal Target Recognition via RNA Structure and Stability Control at mRNA 3' Ends / Holmqvist E., Li L., Bischler T., Barquist L., Vogel J. // Molecular Cell – 2018. – T. $70 - N_{\odot} 5 - C.971$ - 982.e6.

78. Bohn, C. Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism / Bohn C., Rigoulay C., Chabelskaya S., Sharma C.M., Marchais A., Skorski P., Borezée-Durant E., Barbet R., Jacquet E., Jacq A., Gautheret D., Felden B., Vogel J., Bouloc P. // Nucleic Acids Research – 2010. – T. $38 - N_{0} 19 - C.6620-6636$.

79. Rochat, T. Tracking the Elusive Function of Bacillus subtilis Hfq / Rochat T., Delumeau O., Figueroa-Bossi N., Noirot P., Bossi L., Dervyn E., Bouloc P. // PloS One -2015. - T. 10 - N = 4 - C.e0124977.

80. Rochat, T. Lack of interchangeability of Hfq-like proteins / Rochat T., Bouloc P., Yang Q., Bossi L., Figueroa-Bossi N. // Biochimie – 2012. – T. $94 - N_{\odot} 7 - C.1554-1559$.

81. Jousselin, A. On the facultative requirement of the bacterial RNA chaperone, Hfq / Jousselin A., Metzinger L., Felden B. // Trends in Microbiology $-2009. - T. 17 - N_{2} 9 - C.399-405.$

82. Bae, W. CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression / Bae W., Jones P.G., Inouye M. // Journal of Bacteriology -1997. - T. 179 - N 22 - C.7081-7088.

83. Caballero, C.J. The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus / Caballero C.J., Menendez-Gil P., Catalan-Moreno A., Vergara-Irigaray M., García B., Segura V., Irurzun N., Villanueva M., Ruiz de los Mozos I., Solano C., Lasa I., Toledo-Arana A. // Nucleic Acids Research – 2018. – T. $46 - N^{\circ} 3 - C.1345 - 1361$.

84. Schwenk, S. Regulatory RNA in Mycobacterium tuberculosis, back to basics / Schwenk S., Arnvig K.B. // Pathogens and Disease -2018. -T. 76 - N = 4 - C.fty035.

85. Płociński, P. Proteomic and transcriptomic experiments reveal an essential role of RNA degradosome complexes in shaping the transcriptome of Mycobacterium tuberculosis / Płociński P.,

Macios M., Houghton J., Niemiec E., Płocińska R., Brzostek A., Słomka M., Dziadek J., Young D., Dziembowski A. // Nucleic Acids Research – 2019. – T. 47 – № 11 – C.5892–5905.

86. Mai, J. Mycobacterium tuberculosis 6C sRNA binds multiple mRNA targets via C-rich loops independent of RNA chaperones / Mai J., Rao C., Watt J., Sun X., Lin C., Zhang L., Liu J. // Nucleic Acids Research -2019. - T. 47 - N = 8 - C.4292 - 4307.

87. Vincent Lévy-Frébault, V. Proposed Minimal Standards for the Genus Mycobacterium and for Description of New Slowly Growing Mycobacterium Species† / Vincent Lévy-Frébault V., Portaels F. // International Journal of Systematic and Evolutionary Microbiology – 1992. – T. 42 – № 2 – C.315–323.

88. Arnvig, K.B. Identification of small RNAs in Mycobacterium tuberculosis / Arnvig K.B., Young D.B. // Molecular Microbiology – 2009. – T. $73 - N_2 3 - C.397-408$.

89. Akama, T. Whole-Genome Tiling Array Analysis of Mycobacterium leprae RNA Reveals High Expression of Pseudogenes and Noncoding Regions / Akama T., Suzuki K., Tanigawa K., Kawashima A., Wu H., Nakata N., Osana Y., Sakakibara Y., Ishii N. // Journal of Bacteriology – 2009. – T. 191 – N 10 – C.3321–3327.

90. Arnvig, K.B. Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis / Arnvig K.B., Comas I., Thomson N.R., Houghton J., Boshoff H.I., Croucher N.J., Rose G., Perkins T.T., Parkhill J., Dougan G., Young D.B. // PLoS pathogens – 2011. – T. 7 – N_{2} 11 – C.e1002342.

91. Miotto, P. Genome-Wide Discovery of Small RNAs in Mycobacterium tuberculosis / Miotto P., Forti F., Ambrosi A., Pellin D., Veiga D.F., Balazsi G., Gennaro M.L., Serio C.D., Ghisotti D., Cirillo D.M. // PLOS ONE – 2012. – T. $7 - N_{2}$ 12 – C.e51950.

92. Pellin, D. A Genome-Wide Identification Analysis of Small Regulatory RNAs in Mycobacterium tuberculosis by RNA-Seq and Conservation Analysis / Pellin D., Miotto P., Ambrosi A., Cirillo D.M., Serio C.D. // PLOS ONE – 2012. – T. 7 – N $_2$ 3 – C.e32723.

93. Livny, J. High-Throughput, Kingdom-Wide Prediction and Annotation of Bacterial Non-Coding RNAs / Livny J., Teonadi H., Livny M., Waldor M.K. // PLOS ONE – 2008. – T. $3 - N_{2} 9 - C.e3197$.

94. Ignatov, D. RNA-Seq Analysis of Mycobacterium avium Non-Coding Transcriptome / Ignatov D., Malakho S., Majorov K., Skvortsov T., Apt A., Azhikina T. // PLOS ONE – 2013. – T. 8 – N_{2} 9 – C.e74209.

95. Li, S.-K. Identification of small RNAs in Mycobacterium smegmatis using heterologous Hfq / Li S.-K., Ng P.K.-S., Qin H., Lau J.K.-Y., Lau J.P.-Y., Tsui S.K.-W., Chan T.-F., Lau T.C.-K. // RNA (New York, N.Y.) $- 2013. - T. 19 - N \ge 1 - C.74 - 84$.

96. Ozuna, A. baerhunter: an R package for the discovery and analysis of expressed non-coding regions in bacterial RNA-seq data / Ozuna A., Liberto D., Joyce R.M., Arnvig K.B., Nobeli I. // Bioinformatics $-2020. - T. 36 - N_{2} 3 - C.966-969.$

97. Solans, L. The PhoP-Dependent ncRNA Mcr7 Modulates the TAT Secretion System in Mycobacterium tuberculosis / Solans L., Gonzalo-Asensio J., Sala C., Benjak A., Uplekar S., Rougemont J., Guilhot C., Malaga W., Martín C., Cole S.T. // PLOS Pathogens – 2014. – T. $10 - N_{\odot} 5 - C.e1004183$.

98. Walters, S.B. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis / Walters S.B., Dubnau E., Kolesnikova I., Laval F., Daffe M., Smith I. // Molecular Microbiology -2006. -T. 60 - N 2 - C.312 - 330.

99. Kuo, C.-J. Novel mycobacteria antigen 85 complex binding motif on fibronectin / Kuo C.-J., Bell H., Hsieh C.-L., Ptak C.P., Chang Y.-F. // The Journal of Biological Chemistry $-2012. - T. 287 - N \ge 3 - C.1892 - 1902.$

100. Naito, M. The novel fibronectin-binding motif and key residues of mycobacteria / Naito M., Ohara N., Matsumoto S., Yamada T. // The Journal of Biological Chemistry $-1998. - T. 273 - N_{\odot} 5 - C.2905-2909.$

101. Weinberg, Z. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline / Weinberg Z., Barrick J.E., Yao Z., Roth A., Kim J.N., Gore J., Wang J.X., Lee E.R., Block K.F., Sudarsan N., Neph S., Tompa M., Ruzzo W.L., Breaker R.R. // Nucleic Acids Research – 2007. – T. $35 - N_{2}$ 14 – C.4809–4819.

102. Bar-Oz, M. The small non-coding RNA B11 regulates multiple facets of Mycobacterium abscessus virulence / Bar-Oz M., Martini M.C., Alonso M.N., Meir M., Lore N.I., Miotto P., Riva C., Angala S.K., Xiao J., Masiello C.S., Misiakou M.-A., Sun H., Moy J.K., Jackson M., Johansen H.K., Cirillo D.M., Shell S.S., Barkan D. // PLOS Pathogens – 2023. – T. 19 – № 8 – C.e1011575.

103. Rodriguez, G.M. The Iron Response of Mycobacterium tuberculosis and Its Implications for Tuberculosis Pathogenesis and Novel Therapeutics / Rodriguez G.M., Sharma N., Biswas A., Sharma N. // Frontiers in Cellular and Infection Microbiology – 2022. – T. 12 – C.876667.

104. Ignatov, D.V. Expression of small RNAs of Mycobacterium tuberculosis in murine models of tuberculosis infection / Ignatov D.V., Timoshina O.Yu., Logunova N.N., Skvortsov T.A., Azhikina T.L. // Russian Journal of Bioorganic Chemistry -2014. - T. 40 - N 2 - C.233 - 235.

105. Hnilicová, J. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria / Hnilicová J., Jirát Matějčková J., Šiková M., Pospíšil J., Halada P., Pánek J., Krásný L. // Nucleic Acids Research – 2014. – T. 42 – № 18 – C.11763–11776.

106. Šiková, M. Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis / Šiková M., Janoušková M., Ramaniuk O., Páleníková P., Pospíšil J., Bartl P., Suder A., Pajer P., Kubičková P., Pavliš O., Hradilová M., Vítovská D., Šanderová H., Převorovský M., Hnilicová J., Krásný L. // Molecular Microbiology – 2019. – T. 111 – № 2 – C.354–372.

107. Olatz Ruiz-Larrabeiti, NAD+ capping of RNA in Archaea and Mycobacteria - Abstract -Europe PMC [Электронный ресурс]. URL: https://europepmc.org/article/ppr/ppr433163 (accessed: 28.06.2023).

108. Petrov, A. Chapter Sixteen - Analysis of RNA by Analytical Polyacrylamide Gel Electrophoresis Laboratory Methods in Enzymology: RNA // под ред. J. Lorsch. Academic Press, 2013. – 301–313с.

109. Parish, T. Electroporation of mycobacteria / Parish T., Stoker N.G. // Methods in Molecular Biology (Clifton, N.J.) – 1995. – T. 47 – C.237–252.

110. Parish, T. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement / Parish T., Stoker N.G. // Microbiology (Reading, England) – 2000. – T. 146 (Pt 8) – C.1969–1975.

111. Shleeva, M. Formation of 'non-culturable' cells of Mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation / Shleeva M., Mukamolova G.V., Young M., Williams H.D., Kaprelyants A.S. // Microbiology – 2004. – T. 150 – N_{0} 6 – C.1687–1697.

112. Man, J.C. de The probability of most probable numbers / Man J.C. de // European journal of applied microbiology and biotechnology – 1975. – T. 1 – \mathbb{N} 1 – C.67–78.

113. Shleeva, M.O. Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification / Shleeva M.O., Kudykina Y.K., Vostroknutova G.N., Suzina N.E., Mulyukin A.L., Kaprelyants A.S. // Tuberculosis – $2011. - T. 91 - N_2 2 - C.146 - 154$.

114. Huang, Y. Scalable and cost-effective ribonuclease-based rRNA depletion for transcriptomics / Huang Y., Sheth R.U., Kaufman A., Wang H.H. // Nucleic Acids Research $-2020. - T. 48 - N_{\text{D}} 4 - C.e20.$

115. Langmead, B. Fast gapped-read alignment with Bowtie 2 / Langmead B., Salzberg S.L. // Nature Methods – 2012. – T. 9 – \mathbb{N} 4 – C.357–359.

116. Liao, Y. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features / Liao Y., Smyth G.K., Shi W. // Bioinformatics – 2014. – T. 30 – № 7 – C.923–930.

117. Kapopoulou, A. The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes / Kapopoulou A., Lew J.M., Cole S.T. // Tuberculosis (Edinburgh, Scotland) $- 2011. - T. 91 - N_{0} 1 - C.8 - 13$.

118. Love, M.I. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 / Love M.I., Huber W., Anders S. // Genome Biology $-2014. - T. 15 - N_{2} 12 - C.550.$

119. Robinson, M.D. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data / Robinson M.D., McCarthy D.J., Smyth G.K. // Bioinformatics (Oxford, England) – 2010. – T. $26 - N_2 1 - C.139-140$.

120. Sherman, B.T. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update) / Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. // Nucleic Acids Research $-2022. - T. 50 - N_{\odot} W1 - C.W216-W221.$

121. Wu, M. TCseq: Time course sequencing data analysis. R package version 1.23.0 [Электронный ресурс]. URL: https://github.com/MengjunWu/TCseq.

122. McClure, R. Computational analysis of bacterial RNA-Seq data / McClure R., Balasubramanian D., Sun Y., Bobrovskyy M., Sumby P., Genco C.A., Vanderpool C.K., Tjaden B. // Nucleic Acids Research $-2013. - T.41 - N_{2} 14 - C.e140$.

123. Lamichhane, G. Definition and annotation of (myco)bacterial non-coding RNA / Lamichhane G., Arnvig K.B., McDonough K.A. // Tuberculosis (Edinburgh, Scotland) – 2013. – T. 93 – N_{2} 1 – C.26–29.

124. Perez-Riverol, Y. The PRIDE database and related tools and resources in 2019: improving support for quantification data / Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yılmaz Ş., Tiwary S., Cox J., Audain E., Walzer M., Jarnuczak A.F., Ternent T., Brazma A., Vizcaíno J.A. // Nucleic Acids Research – 2019. – T. 47 – № D1 – C.D442–D450.

125. Wright, P.R. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains / Wright P.R., Georg J., Mann M., Sorescu D.A., Richter A.S., Lott S., Kleinkauf R., Hess W.R., Backofen R. // Nucleic Acids Research – 2014. – T. 42 – № W1 – C.W119–W123.

126.btjadenTargetRNA3[Электронный ресурс].URL:https://github.com/btjaden/TargetRNA3 (accessed: 11.09.2023).

127. Robinson, J.T. Integrative genomics viewer / Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. // Nature Biotechnology – 2011. – T. 29 – № 1 – C.24–26.

128. Ramírez, F. deepTools2: a next generation web server for deep-sequencing data analysis / Ramírez F., Ryan D.P., Grüning B., Bhardwaj V., Kilpert F., Richter A.S., Heyne S., Dündar F., Manke T. // Nucleic Acids Research – 2016. – T. 44 - N W1 - C.W160-165.

129. Blighe, K. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R package version 1.18.0 [Электронный ресурс]. URL: https://github.com/kevinblighe/EnhancedVolcano.

130. Gruber, A.R. The ViennaRNA web services / Gruber A.R., Bernhart S.H., Lorenz R. // Methods in Molecular Biology (Clifton, N.J.) – 2015. - T. 1269 - C.307 - 326.

131. Darty, K. VARNA: Interactive drawing and editing of the RNA secondary structure / Darty K., Denise A., Ponty Y. // Bioinformatics – 2009. – T. 25 – № 15 – C.1974–1975.

132. Shires, K. The cold-shock stress response in Mycobacterium smegmatis induces the expression of a histone-like protein / Shires K., Steyn L. // Molecular Microbiology $-2001. - T. 39 - N_{\odot} 4 - C.994-1009.$

133. Pánek, J. The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures / Pánek J., Krásný L., Bobek J., Ježková E., Korelusová J., Vohradský J. // Nucleic Acids Research – 2011. – T. 39 – № 8 – C.3418–3426.

134. Georg, J. cis-antisense RNA, another level of gene regulation in bacteria / Georg J., Hess W.R. // Microbiology and molecular biology reviews: MMBR – 2011. – T. 75 – N_2 2 – C.286–300.

135. Ko, E.-M. Negative regulation of the acsA1 gene encoding the major acetyl-CoA synthetase by cAMP receptor protein in Mycobacterium smegmatis / Ko E.-M., Oh Y., Oh J.-I. // Journal of Microbiology -2022. -T. 60 - N 12 - C.1139 - 1152.

136. Ouellet, H. The Mycobacterium tuberculosis cytochrome P450 system / Ouellet H., Johnston J.B., Ortiz de Montellano P.R. // Archives of Biochemistry and Biophysics – $2010. - T. 493 - N_{\text{P}} 1 - C.82-95$.

137. Singh, A.K. Characterization of Mycobacterium smegmatis sigF mutant and its regulon: overexpression of SigF antagonist (MSMEG_1803) in M. smegmatis mimics sigF mutant phenotype, loss of pigmentation, and sensitivity to oxidative stress / Singh A.K., Dutta D., Singh V., Srivastava V., Biswas R.K., Singh B.N. // MicrobiologyOpen – 2015. – T. $4 - N_{2} 6 - C.896-916$.

138. Farrell, J. Temperature Effects on Microorganisms / Farrell J., Rose A. // Annual Review of Microbiology $-1967. - T. 21 - N_{2} 1 - C.101-120.$

139. Ingram, M. Psychophilic and psychrotrophic microorganisms / Ingram M. // Annales De l'Institut Pasteur De Lille – 1965. – T. 16 – C.111–118.

140. Sharma, P. RNA thermometers in bacteria: Role in thermoregulation / Sharma P., Mondal K., Kumar S., Tamang S., Najar I.N., Das S., Thakur N. // Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms – 2022. – T. 1865 – № 7 – C.194871.

141. Giuliodori, A.M. The cspA mRNA Is a Thermosensor that Modulates Translation of the Cold-Shock Protein CspA / Giuliodori A.M., Di Pietro F., Marzi S., Masquida B., Wagner R., Romby P., Gualerzi C.O., Pon C.L. // Molecular Cell – 2010. – T. 37 - N = 1 - C.21 - 33.

142. Majdalani, N. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription / Majdalani N., Cunning C., Sledjeski D., Elliott T., Gottesman S. // Proceedings of the National Academy of Sciences of the United States of America – 1998. – T. $95 - N_{2} 21 - C.12462 - 12467$.

143. Sledjeski, D. A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. / Sledjeski D., Gottesman S. // Proceedings of the National Academy of Sciences – 1995. – T. $92 - N_{0} 6 - C.2003 - 2007$.

144. Gierga, G. Non-coding RNAs in marine Synechococcus and their regulation under environmentally relevant stress conditions / Gierga G., Voss B., Hess W.R. // The ISME Journal – 2012. – T. $6 - N \ge 8 - C.1544 - 1557$.

145. Houghton, J. The Mycobacterium tuberculosis sRNA F6 Modifies Expression of Essential Chaperonins, GroEL2 and GroES / Houghton J., Rodgers A., Rose G., D'Halluin A., Kipkorir T., Barker D., Waddell S.J., Arnvig K.B. // Microbiology Spectrum - 2021. - T. 9 - N 2 - C.e0109521.

146. Ghisla, S. Mechanism of inactivation of the flavoenzyme lactate oxidase by oxalate / Ghisla S., Massey V. // The Journal of Biological Chemistry – 1975. – T. 250 – № 2 – C.577–584.

147. Sassetti, C.M. Genes required for mycobacterial growth defined by high density mutagenesis / Sassetti C.M., Boyd D.H., Rubin E.J. // Molecular Microbiology $-2003. - T. 48 - N \ge 1 - C.77-84$.

148. Daugherty, A. Mycobacterium smegmatis RoxY Is a Repressor of oxyS and Contributes to Resistance to Oxidative Stress and Bactericidal Ubiquitin-Derived Peptides ▼ / Daugherty A., Powers K.M., Standley M.S., Kim C.S., Purdy G.E. // Journal of Bacteriology – 2011. – T. 193 – № 24 – C.6824–6833.

149. Haverkorn van Rijsewijk, B.R.B. Distinct transcriptional regulation of the two Escherichia coli transhydrogenases PntAB and UdhA / Haverkorn van Rijsewijk B.R.B., Kochanowski K., Heinemann M., Sauer U. // Microbiology (Reading, England) – 2016. – T. $162 - N_{2} 9 - C.1672-1679$.

150. Kana, B.D. The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro / Kana B.D., Gordhan B.G., Downing K.J., Sung N., Vostroktunova G., Machowski E.E., Tsenova L., Young M., Kaprelyants A., Kaplan G., Mizrahi V. // Molecular Microbiology – 2008. – T. 67 – N2 – C.672–684.

151. Downing, K.J. Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro / Downing K.J., Mischenko V.V., Shleeva M.O., Young D.I., Young M., Kaprelyants A.S., Apt A.S., Mizrahi V. // Infection and Immunity $-2005. - T. 73 - N_{2} 5 - C.3038 - 3043$.

152. Raman, S. Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence / Raman S., Hazra R., Dascher C.C., Husson R.N. // Journal of Bacteriology -2004. - T. 186 - N = 19 - C.6605 - 6616.

153. Betts, J.C. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling / Betts J.C., Lukey P.T., Robb L.C., McAdam R.A., Duncan K. // Molecular Microbiology -2002. - T. 43 - N 2 3 - C.717 - 731.

154. Kinoshita-Daitoku, R. A bacterial small RNA regulates the adaptation of Helicobacter pylori to the host environment / Kinoshita-Daitoku R., Kiga K., Miyakoshi M., Otsubo R., Ogura Y., Sanada T., Bo Z., Phuoc T.V., Okano T., Iida T., Yokomori R., Kuroda E., Hirukawa S., Tanaka M., Sood A., Subsomwong P., Ashida H., Binh T.T., Nguyen L.T., Van K.V., Ho D.Q.D., Nakai K., Suzuki T., Yamaoka Y., Hayashi T., Mimuro H. // Nature Communications -2021. - T. 12 - N 1 - C.2085.

155. Ignatov, D.V. Dormant non-culturable Mycobacterium tuberculosis retains stable lowabundant mRNA / Ignatov D.V., Salina E.G., Fursov M.V., Skvortsov T.A., Azhikina T.L., Kaprelyants A.S. // BMC Genomics – 2015. – T. 16 - N = 1 - C.954.

156. Moores, A. Expression, maturation and turnover of DrrS, an unusually stable, DosR regulated small RNA in Mycobacterium tuberculosis / Moores A., Riesco A.B., Schwenk S., Arnvig K.B. // PLOS ONE $-2017. -T. 12 - N_{2} 3 - C.e0174079.$

157. Apt, A. Man and mouse TB: contradictions and solutions / Apt A., Kramnik I. // Tuberculosis (Edinburgh, Scotland) – 2009. – T. $89 - N_{2} - C.195 - 198$.

158. Linge, I. Prolonged B-Lymphocyte-Mediated Immune and Inflammatory Responses to Tuberculosis Infection in the Lungs of TB-Resistant Mice / Linge I., Kondratieva E., Apt A. // International Journal of Molecular Sciences -2023. -T. 24 - N 2 - C.1140.

159. Kak, G. Interferon-gamma (IFN- γ): Exploring its implications in infectious diseases / Kak G., Raza M., Tiwari B.K. // Biomolecular Concepts – 2018. – T. 9 – No 1 – C.64–79.

160. Saunders, B.M. Life and death in the granuloma: immunopathology of tuberculosis / Saunders B.M., Britton W.J. // Immunology & Cell Biology -2007. - T. 85 - N 2 - C.103 - 111.

161. Boon, C. How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later / Boon C., Dick T. // Future Microbiology -2012. -T. $7 - N_{2} 4 - C.513 - 518$.

162. MacMicking, J. Nitric Oxide and Macrophage Function / MacMicking J., Xie Q., Nathan C. // Annual Review of Immunology – 1997. – T. $15 - N_{2} - C.323-350$.

163. Bogdan, C. The role of nitric oxide in innate immunity / Bogdan C., Röllinghoff M., Diefenbach A. // Immunological Reviews – 2000. – T. 173 – C.17–26.

164. Hu, Y. Detection of mRNA Transcripts and Active Transcription in Persistent Mycobacterium tuberculosisInduced by Exposure to Rifampin or Pyrazinamide / Hu Y., Mangan J.A., Dhillon J., Sole K.M., Mitchison D.A., Butcher P.D., Coates A.R.M. // Journal of Bacteriology – 2000. – T. 182 – N_{2} 22 – C.6358–6365.

165. Chauhan, N.K. Structural and Functional Characterization of Rv0792c from Mycobacterium tuberculosis: Identifying Small Molecule Inhibitor against HutC Protein / Chauhan N.K., Anand A., Sharma A., Dhiman K., Gosain T.P., Singh P., Singh P., Khan E., Chattopadhyay G., Kumar A., Sharma D., Ashish, Sharma T.K., Singh R. // Microbiology Spectrum – 2022. – T. 11 – N_{2} 1 – C.e01973-22.

166. He, H. Components of the Rv0081-Rv0088 Locus, Which Encodes a Predicted Formate Hydrogenlyase Complex, Are Coregulated by Rv0081, MprA, and DosR in Mycobacterium tuberculosis / He H., Bretl D.J., Penoske R.M., Anderson D.M., Zahrt T.C. // Journal of Bacteriology – 2011. – T. 193 – N_{0} 19 – C.5105–5118.

167. Recchi, C. Mycobacterium tuberculosis Rv1395 Is a Class III Transcriptional Regulator of the AraC Family Involved in Cytochrome P450 Regulation * / Recchi C., Sclavi B., Rauzier J., Gicquel B., Reyrat J.-M. // Journal of Biological Chemistry – 2003. – T. 278 – № 36 – C.33763–33773.

168. Camacho, L.R. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis / Camacho L.R., Ensergueix D., Perez E., Gicquel B., Guilhot C. // Molecular Microbiology – 1999. – T. $34 - N_{2} - C.257$ –267.

169. Chauhan, S. CmtR, a cadmium-sensing ArsR–SmtB repressor, cooperatively interacts with multiple operator sites to autorepress its transcription in Mycobacterium tuberculosis / Chauhan S., Kumar A., Singhal A., Tyagi J.S., Krishna Prasad H. // The FEBS Journal – 2009. – T. 276 – N_{2} 13 – C.3428–3439.

170. Li, X. A novel stress-inducible CmtR-ESX3-Zn2+ regulatory pathway essential for survival of Mycobacterium bovis under oxidative stress / Li X., Chen L., Liao J., Hui J., Li W., He Z.-G. // Journal of Biological Chemistry -2020. - T. 295 - N 50 - C.17083 - 17099.

171. Gao, C. Characterization of a Novel ArsR-Like Regulator Encoded by Rv2034 in Mycobacterium tuberculosis / Gao C., Yang M., He Z.-G. // PLOS ONE -2012. -T. 7 - N = 4 - C.e36255.

172. Gao, C.-H. An ArsR-like transcriptional factor recognizes a conserved sequence motif and positively regulates the expression of phoP in mycobacteria / Gao C.-H., Yang M., He Z.-G. // Biochemical and Biophysical Research Communications -2011. - T.411 - N = 4 - C.726 - 731.

173. Bajaj, R.A. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response / Bajaj R.A., Arbing M.A., Shin A., Cascio D., Miallau L. // Acta Crystallographica Section F: Structural Biology Communications – 2016. – T. $72 - N_{\odot} 12 - C.863-869$.

174. Hotter, G.S. Identification of a cadmium-induced gene in Mycobacterium bovis and Mycobacterium tuberculosis / Hotter G.S., Wilson T., Collins D.M. // FEMS Microbiology Letters – $2001. - T. 200 - N_{2} 2 - C.151 - 155.$

175. Rowland, J.L. Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload / Rowland J.L., Niederweis M. // Tuberculosis – 2012. – T. 92 – № 3 – C.202–210.

176. Botella, H. Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages / Botella H., Peyron P., Levillain F., Poincloux R., Poquet Y., Brandli I., Wang C., Tailleux L., Tilleul S., Charrière G.M., Waddell S.J., Foti M., Lugo-Villarino G., Gao Q., Maridonneau-Parini I., Butcher P.D., Castagnoli P.R., Gicquel B., de Chastellier C., Neyrolles O. // Cell Host & Microbe – 2011. – T. $10 - N_{2} - C.248 - 259$.

177. Phelan, J. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance / Phelan J., Coll F., McNerney R., Ascher D.B., Pires D.E.V., Furnham N., Coeck N., Hill-Cawthorne G.A., Nair M.B., Mallard K., Ramsay A., Campino S., Hibberd M.L., Pain A., Rigouts L., Clark T.G. // BMC Medicine – 2016. – T. $14 - N_{\odot} 1 - C.31$.

178. Li, Q. Characterization of a putative ArsR transcriptional regulator encoded by Rv2642 from Mycobacterium tuberculosis / Li Q., Li C., Xie L., Zhang C., Feng Y., Xie J. // Journal of Biomolecular Structure and Dynamics – 2017. – T. $35 - N_{2} 9 - C.2031-2039$.

179. Yang, M. Cd(II)-binding transcriptional regulator interacts with isoniazid and regulates drug susceptibility in mycobacteria / Yang M., Jia S.-H., Tao H.-L., Zhu C., Jia W.-Z., Hu L.-H., Gao C.-H. // The Journal of Biochemistry -2021. - T. 169 - N 1 - C.43 - 53.

180. Juárez, M.D. Characterization of the Mycobacterium tuberculosis region containing the mpt83 and mpt70 genes / Juárez M.D., Torres A., Espitia C. // FEMS microbiology letters – 2001. – T. $203 - N_{\odot} 1 - C.95 - 102$.

181. Clemmensen, H.S. In Vivo Antigen Expression Regulates CD4 T Cell Differentiation and Vaccine Efficacy against Mycobacterium tuberculosis Infection / Clemmensen H.S., Dube J.-Y., McIntosh F., Rosenkrands I., Jungersen G., Aagaard C., Andersen P., Behr M.A., Mortensen R. // mBio $-2021. - T. 12 - N_{2} - C.10.1128/mbio.00226-21.$

182. Fontan, P.A. Cellular signaling pathways and transcriptional regulation in Mycobacterium tuberculosis: Stress control and virulence / Fontan P.A., Walters S., Smith I. // Current Science – 2004. – T. $86 - N_{2} 1 - C.122 - 134$.

183. Kondratieva, E. An In Vivo Model of Separate M. tuberculosis Phagocytosis by Neutrophils and Macrophages: Gene Expression Profiles in the Parasite and Disease Development in the Mouse Host / Kondratieva E., Majorov K., Grigorov A., Skvortsova Y., Kondratieva T., Rubakova E., Linge I., Azhikina T., Apt A. // International Journal of Molecular Sciences – 2022. – T. 23 – N = 6 - C.2961.

184. Fu, Y.L. Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages / Fu Y.L., Harrison R.E. // Frontiers in Immunology – 2021. – T. 12.

185. Deretic, V. Autophagy, an immunologic magic bullet: Mycobacterium tuberculosis phagosome maturation block and how to bypass it / Deretic V. // Future microbiology – 2008. – T. 3 – N_{2} 5 – C.517–524.

186. Eskelinen, E.-L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy / Eskelinen E.-L. // Molecular Aspects of Medicine $-2006. - T. 27 - N_{\odot} 5 - 6 - C.495 - 502.$

187. Boni, F.G. Cytokine storm in tuberculosis and IL-6 involvement / Boni F.G., Hamdi I., Koundi L.M., Shrestha K., Xie J. // Infection, Genetics and Evolution – 2022. – T. 97 – C.105166.

188. Domingo-Gonzalez, R. Cytokines and Chemokines in Mycobacterium tuberculosis infection / Domingo-Gonzalez R., Prince O., Cooper A., Khader S. // Microbiology spectrum -2016. – T. $4 - N \ge 5 - C.10.1128$ /microbiolspec.TBTB2-0018–2016.

189. Manganelli, R. Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence / Manganelli R. // Microbiology Spectrum – 2014. – T. $2 - N_{\text{O}} 1 - \text{C.MGM2-0007-2013}$.

Приложения

Приложение А

Список использованных в исследовании олигонуклеотидов

Таблица А.1 – Использованные в работе олигонуклеотиды

Название Последовательность (5'-3')					
Создание штаммов <i>M. smegmatis</i> ΔF6, ΔF6::F6 и ΔF6::pMV306					
LHA F6 F TCTCTCAAGCTTGCCTTTCGCTCGCGGTACTACCT					
LHA F6 R	TCTCTCGAATTCACGCCTCCGTTACACGTCCCGAAAA				
RHA F6 F	TCTCTCGAATTCGGTTCGGGAGTGGCTTGATCCAAAGA				
RHA F6 R	CTCTCTGGATCCCGTGAGGCCGCCGACACCAT				
F6-KO-check for	TCGCGGAGAAGAAGAAATCCA				
F6-KO-check rev	TGGGGGCGTCACTACTCGT				
rrnB 200 xbaI for	TCTAGAGAGGGCGGCGTTTATGTG				
rrnB_200 hindIII rev	AAGCTTTAAGTTACGTCCTTGGAAACTG				
F6 hindIII for	ATAAGCTTCGAGTAGCTCCGTGTTGCC				
F6_hindIII_rev	ATAAGCTTTAAATGGCCCCGTGTTGC				
Создание репортерных констру	кций для проверки взаимодействия 5' НТО мРНК <i>MSMEG_4640</i> и				
	нкРНК <i>M. smegmatis</i> F6				
UTR4640-for	ACCTCTAGATAGTGATCGCGCGGGTTG				
UTR4640-rev	CCAGGATCCTGCCGTACAAACGTTC				
rrnB_200_xbaI_for	TCTAGAGAGGGCGGCGTTTATGTG				
pMV306_term_xbaI_rev	TCTAGAGATCACCGCGGCCATGATG				
F6-mut-for	GACTCGACGGCAACACGGG				
F6-mut-rev	TGTGGGTCAGACGGCAACACG				
UTR4640_mut-for	TGTGAAGGGCCACGATGATGATG				
UTR4640_mut-for	GACTTCCGACACGAGGACCG				
pMV306-For	TATGGAAAAACGCCAGCAACGC				
pMV306-Rev	ATGCCTGGCAGTCGATCGTA				
pAMYC-For	AGCAAGAGATTACGCGCAGAC				
pAMYC-Rev	GACAGTCATAAGTGCGGCGA				
Создание конструкций с гено	м нкРКН MTS1338 и контрольных плазмид (pMV261-MTS1338,				
pMV261rrr	B, pMV261-MTS1338-GFP, pMV261rrnB-GFP)				
rrnB_200_xbaI_for	TCTAGAGAGGGCGGCGTTTATGTG				
rrnB_200_hindIII_rev	AAGCTTTAAGTTACGTCCTTGGAAACTG				
MTS1338_HindIII_for	ATAAGCTTGGGGAAACCCGGTGATCT				
MTS1338_HindIII_rev	ATAAGCTTAACAGGATGAGGATCTGCCC				
pMV261_ins_F	GATGTACGTGGCGAACTCCG				
pMV261_ins_R	ATGCCTGGCAGTCGATCGTA				
pMV261_term	AACCATGATGGCCGGACAAACAACAG				
Деплеция 168 и 238 рРНК					
168_F	/5Phos/AGAGTTTGATCCTGGCTCAG				
16S_R	AAGGAGGTGATCCAGCCGCA				
Название	Последовательность (5'-3')				
F	/5Phos/YGGTGGATGCCTTGGC				
23S_R YRCTTAGATGCTTTCAGCRBTTATC					
Нозерн-блоттинг					
NB_F6	GTCGGGTCGGGGGGTCAGACGGCAACACGGAGCTA				

NB-5S GTGGTATCCAACGCAGAGT						
Количественный ПЦР						
16S_MTB_qfor	TACGTAGGGTGCGAGCGTTG					
16S_MTB_qrev	CCCGCACGCTCACAGTTAAG					
16S_MSM_qfor	ATGTCGGTTCCCTTGTGGC					
16S_MSM_qrev	CAAGGGTTGCGCTCGTTG					
MSMEG_0158_qfor	GGAGCAGAACTGGGTCCGTAC					
MSMEG_0158_qrev	CTCGAAGATCTTGTCCTGACGGG					
MSMEG_1972_qfor	GAAACCGAGAACAGCCGTCCG					
MSMEG_1972_qrev	TCCGAGAGACAGGCGATGAACC					
MSMEG_2909_qfor	TGTTCAACTCGATCTGGGACTGC					
MSMEG_2909_qrev	ATCCCGTTCGCACACCGTAC					
MSMEG_3722_qfor	CCACGTCCGGATGAGGTTCGA					
MSMEG_3722_qrev	ACCTGGATCTCCGCGATGGT					
MSMEG_4793_qfor	GGATGTGAATGCGCTGACATCGT					
MSMEG_4793_qrev	CTCGATCAACTGGCCGATCACC					
MSMEG_6159_qfor	CTCCGCTGACGTGTTTGTCC					
MSMEG_6159_qrev	TGGCCGACCTCGAACTCAAC					
MSMEG_0149-qfor	ACACCGAAACCGACACCCC					
MSMEG_0149-qrev	TTGGGGCGCAGACTTTCCC					
MSMEG_0150-qfor	ATCTCTCTGCTGAACGCCTTGAC					
MSMEG_0150-qrev	AACACGATGGCCGGAATGGA					
MSMEG_0157-qrev	TTGGTGGTGGCATTGGCAAGAG					
MSMEG_0157-qfor	TTGCGCTACATCGGATTCCGG					
MSMEG_0162-qfor	GCGCACTTCGGTTACCTGC					
MSMEG_0162-qrev	CGGCGTAGATCAGGCTGAACA					
MSMEG_4640-qfor	GTCAACTGGGACGCCATC					
MSMEG_4640-qrev	ACGTGGACTGCTTGAACTGC					
MTS1338-qfor	GGGGAAACCCGGTGATCTG					
MTS1338-qrev	GGTAGGTCAAACCGGGTGTACAT					
MSMEG_0965_qfor	AACCGTCTTACCCGTGAGTG					
MSMEG_0965_qrev	GGGGTGGTGTAGCTGAAGTT					
MSMEG_5872_qfor	ACTACGTGACCAAGCCGTTC					
MSMEG_5872_qrev	ATCTTGGGCTTGGACAACAC					
MSMEG_3886_qfor	GGAGTCTTCGGCTTCAACAG					
MSMEG_3886_qrev	CACAGCTGGTACAGCCACAC					
MSMEG_2433_qfor	GCTGGTCAACCAGAACGAGT					
MSMEG_2433_qrev	TCTTTCACCAGGCCGTACAT					
MSMEG_0615_qfor	ATTCCTCGACACCAACGAAG					
MSMEG_0615_qrev	GTGAACAGACGCTCCATGTC					
MSMEG_5244_qfor	ACATCAAGGGCATGGAACTC					
MSMEG_5244_qrev	GCGATCTGTTTGTTGGTCAG					
MSMEG_3935_qfor	AGGATCATTCGTCGCAAGTC					
MSMEG_3935_qrev	GGTTTCTCGAACGGACTCAG					
mIL1-β-qfor	CAACCAACAAGTGATATTCTCCATG					
mIL1-β-qrev	ATCCACACTCTCCAGCTGCA					
mTGF-β-qfor	ACCGCAACAACGCCATCTA					
mTGF-β-qrev	GCGTATCAGTGGGGGTCAG					
mlL6-qfor	ACCAGAGGAAATTTTCAATAGGC					
mlL6-qrev	TGATGCACTTGCAGAAAACA					
mlL10-qfor	TGTCAAATTCATTCATGGCCT					
mIL10-qrev	AICGATTICTCCCCTGTGAA					
mTNF-a-qfor						
mTNF-a-qrev	GGCITGTCACTCGAATTTTGAGA					
mIL12-qfor	TGTCAATCACGCTACCTCCTC					
mIL12-qrev	TCGGGACTGGCTAAGACAC					
mIL4-qfor	GTIGICATCCIGCTCTTCTTCTC					
mIL4-qrev	CACICICIGIGGIGITCTTCGT					
m_actin-β-qfor	GATCAAGATCATTGCTCCTCCTG					
m actin-β-qrev	ACGCAGCTCAGTAACAGTCC					

Приложение Б

Схема создания конструкции для делеции гена нкРНК F6 M. smegmatis

Рисунок Б.1 – Схема создания конструкции p2NIL_pGOAL19_∆F6 для делеции гена нкРНК F6 *M. smegmatis*

Приложение В

Схема создания конструкции для комплементации штамма ΔF6 M. smegmatis

Рисунок В.1 – Схема создания конструкции для комплементации штамма ∆F6 *M*. *smegmatis* (pMV306-F6) и контрольной конструкции (pMV306rrnB)

Приложение Г

Схема создания репортерной системы для проверки взаимодействия нкРНК F6 и 5'-НТО мРНК *MSMEG_4640*

Рисунок Г.1 – Схема создания конструкций репортерной системы для проверки взаимодействия нкРНК F6 и 5'-НТО *MSMEG_4640* (плазмиды pMV306_MSMEG4640_{5'utr}GFP, pMV306_MSMEG4640_{5'utr}mut_GFP, pAMYC-F6, pAMYC-F6mut)

Приложение Д

Схема создания конструкции для транскрипции MTS1338

Рисунок Д.1 – Схема создания конструкции для транскрипции MTS1338 (pMV261-MTS1338) и контрольной плазмиды (pMV261rrnB)

Приложение Е

Схема создания конструкции для одновременной транскрипции MTS1338 и экспрессии GFP

Рисунок Е.1 – Схема создания конструкции для одновременной транскрипции MTS1338 и экспрессии GFP (pMV261-MTS1338-GFP), и контрольного к данной конструкции вектора (pMV261rrnB-GFP)

Приложение Ж

Подтверждение выявленных дифференциально экспрессированных генов M. smegmatis в условиях холодового стресса

Рисунок Ж.1 – Подтверждение выявленных дифференциально экспрессированных генов *M. smegmatis* в условиях холодового стресса с помощью количественной ОТ-ПЦР; *p < 0,05; ** p < 0,01

Приложение И

Список идентифицированных некодирующих РНК M. smegmatis

Название	Название в	Первое	Тип	Старт	Стоп	Длина	Цепь лнк
ncMSMEG10069c			межтенная	97444	92318	127	
newibiviE010007e		Li et all., 2013	межгенная)2111	92310	127	
ncMSMEG10373B	IGR-2	[13]	межгенная	417812	417967	156	+
ncMSMEG11192	IGR-3	Li et all., 2013 [13]	межгенная	1259277	1259422	146	+
ncMSMEG11248	_	_	межгенная	1324936	1325087	152	+
ncMSMEG11952	—	-	межгенная	2031348	2031593	246	+
ncMSMEG13168	_	_	межгенная	3243077	3243195	119	+
ncMSMEG13916	-	-	межгенная	3985421	3985466	46	+
ncMSMEG14614	-	-	межгенная	4699121	4699269	149	+
ncMSMEG14726	-	-	межгенная	4818706	4818880	175	+
ncMSMEG15366c	-	-	межгенная	5446025	5445854	172	-
ncMSMEG15379	_	_	межгенная	5458677	5458764	88	+
ncMSMEG15794c	IGR-5	Li et all., 2013 [13]	межгенная	5862653	5862475	179	-
ncMSMEG16173	Ms1	Pánek et all., 2011 [15]	межгенная	6242371	6242646	276	+
ncMSMEG0097c	_	_	антисенс	121438	121297	142	-
ncMSMEG0169	_	_	антисенс	194972	195164	193	+
ncMSMEG0222c	_	_	антисенс	248490	248427	64	-
ncMSMEG0560	-	-	антисенс	635378	635587	210	+
ncMSMEG0651c	-	-	антисенс	733045	732942	104	-
ncMSMEG0671	_	_	антисенс	754460	754617	158	+
ncMSMEG0931	_	_	антисенс	1012296	1012438	143	+
ncMSMEG1219	_	_	антисенс	1289000	1289157	158	+
ncMSMEG1239	_	_	антисенс	1310204	1310436	233	+
ncMSMEG1248c	_	_	антисенс	1324789	1324662	128	-
ncMSMEG1286	AS-5	Li et all., 2013 [13]	антисенс	1377215	1377427	213	+
ncMSMEG1362c	_	_	антисенс	1457286	1457142	145	-
ncMSMEG1429	_	_	антисенс	1532901	1533060	160	+
ncMSMEG1504c	-	-	антисенс	1596468	1596337	132	-
ncMSMEG1717	_	_	антисенс	1814601	1814759	159	+
ncMSMEG1920	_	_	антисенс	2000698	2000763	66	+
ncMSMEG2251c	-	-	антисенс	2333658	2333518	141	-
ncMSMEG2387c	_	_	антисенс	2470602	2470457	146	-
ncMSMEG2423c	-	-	антисенс	2503630	2503457	174	-
ncMSMEG2254	-	-	антисенс	2638875	2639024	150	+
ncMSMEG2583c	-	-	антисенс	2665826	2665729	98	-
ncMSMEG3182	_	_	антисенс	3258011	3257975	37	-
ncMSMEG3452c	_	_	антисенс	3520171	3520017	155	-
ncMSMEG3703c	_	_	антисенс	3767507	3767381	127	-
ncMSMEG3735	_	_	антисенс	3801059	3801223	165	+
ncMSMEG3950c	-	-	антисенс	4019746	4019602	145	-
ncMSMEG4042c	-	-	антисенс	4114596	4114445	152	-
ncMSMEG4053	-	-	антисенс	4125416	4125565	150	+
ncMSMEG4100	—	—	антисенс	4178949	4179098	150	+
ncMSMEG4113	_	_	антисенс	4194388	4194524	137	+
ncMSMEG4302c	_	_	антисенс	4393065	4392628	438	-
ncMSMEG4592c	_	_	антисенс	4684618	4684466	153	-
ncMSMEG4593c	_	_	антисенс	4684937	4684808	130	-
ncMSMEG5526c	_	_	антисенс	5617527	5617373	155	-

Таблица И.1 – Выявленные в условиях холодового стресса некодирующие РНК *M. smegmatis*

1	4	0
I	4	0

Название	Название в литературе	Первое упоминание	Тип	Старт транскрипции	Стоп транскрипции	Длина	Цепь ДНК
ncMSMEG5578	_ ~	_	антисенс	5667415	5667571	157	+
ncMSMEG5956	-	—	антисенс	6016248	6016382	135	+
ncMSMEG6024	_	_	антисенс	6092564	6092713	150	+
ncMSMEG6179c	_	_	антисенс	6248547	6248398	150	-
ncMSMEG6289c	—	—	антисенс	6355048	6354881	168	-
ncMSMEG6316c	—	—	антисенс	6382393	6382235	159	-
ncMSMEG6412	—	—	антисенс	6483711	6483899	189	+
ncMSMEG6430	_	_	антисенс	6499589	6499671	83	+
ncMSMEG6646c	—	_	антисенс	6697778	6697628	151	-

Приложение К

Вторичные структуры выявленных транс-кодируемых нкРНК

Рисунок К.1 – Предсказанные вторичные структуры выявленных транс-кодируемых нкРНК; рядом с каждой вторичной структурой указана свободная энергия укладки

Рисунок К.2 – Предсказанные вторичные структуры выявленных транс-кодируемых нкРНК; рядом с каждой вторичной структурой указана свободная энергия укладки

Приложение Л

Предсказанные мРНК мишени выявленных транс-кодируемых нкРНК

Таблица Л.1 – Список предсказанных мРНК мишеней для выявленных транс-кодируемых нкРНК *M. smegmatis*

Ранг	мРНК Мишень	Е ккал / моль	р- значение	Вероятность	Продукт
			nc	MSMEG10069c	11 1 21 21 1 1 2 1
1	MSMEG_1548	-23,43	0	0,36	subunit subunit
		-	ncl	MSMEG10373B	
1	MSMEG_3145	-24,36	0	0,39	secreted cell wall0associated hydrolase
			nc	MSMEG11192	
1	MSMEG_1214	-123,5	0	0,93	oxidoreductase
	1	1	nc	:MSMEG11248	
1	MSMEG_0883	-27,27	2,9E-14	0,47	amidohydrolase family protein
2	MSMEG_6879	-24,98	3,4E-09	0,38	integral membrane protein of the ABC0type Nat permease for neutral amino acids NatD
3	MSMEG_0319	-24,53	0,00000002	0,37	acyltransferase
4	MSMEG_2297	-28,78	0,00000006	0,36	glutaredoxin
		•	nc	MSMEG11952	
1	MSMEG_1887	-46,22	0	0,71	hypothetical protein
2	MSMEG_1763	-46,33	0	0,65	leucineOresponsive regulatory protein
3	MSMEG_0735	-46,33	0	0,64	putative transcriptional regulator
4	MSMEG_2725	-46,33	0	0,64	glutamate transporter permease protein GluD
5	MSMEG_6914	-45,45	0	0,63	
6	MSMEG_2945	-43,72	0	0,6	
7	MSMEG_2554	-41,22	0	0,6	phosphotransferase enzyme family protein
8	MSMEG_2697	-41,07	0	0,57	conserved hypothetical protein
9	MSMEG_3113	-41,9	0	0,56	carbohydrate kinase, fggy
10	MSMEG_6667	-48,84	0	0,56	conserved hypothetical protein
	1	1	nc	MSMEG13168	1
1	MSMEG_6567	-12,74	0,0000074	0,59	iron0dependent peroxidase
2	MSMEG_3179	-23,39	0,000052	0,55	pyridoxamine 5'0phosphate oxidase f
3	MSMEG_6223	-23,89	0,000093	0,54	TetR family protein transcriptional repressor LfrR
4	MSMEG_6187	-13,41	0,000094	0,54	
5	MSMEG_2553	-24,53	0,00096	0,54	transcriptional regulator, TetR family protein
6	MSMEG_3/41	-16,92	0,00025	0,52	transcriptional regulator
7	MSMEG_4974	-17,6	0,00038	0,51	regulator)
8	MSMEG_4845	-15,44	0,0005	0,5	putative acyl0CoA dehydrogenase
9	MSMEG_1851	-19,83	0,00053	0,5	tRNA0Sec
10	MSMEG_3933	-26,62	0,00056	0,5	conserved hypothetical protein
11	MSMEG_4880	-16,23	0,00058	0,5	methylmalonyl0CoA mutase
12	MSMEG_5687	-17,11	0,00069	0,49	23s ribosomal RNA methyltransferase
13	MSMEG_0688	-16,66	0,0009	0,49	aspartate aminotransferase
14	MSMEG_5513	-13,37	0,0015	0,47	serine/threonineOprotein kinase PknE
15	MSMEG_5688	-16,94	0,0016	0,47	regulatory protein, MarR
16	MSMEG_0200	-16,73	0,0017	0,47	hypothetical protein
17	MSMEG_5597	-18,31	0,0017	0,47	transcriptional regulator, TetR family protein
18	MSMEG_1394	-11,54	0,0017	0,47	probable conserved transmembrane protein
19	MSMEG_0451	-22,08	0,0018	0,47	annuonyaroiase family protein

	NDHI	Е	n		
Ранг	METIK Maana	ккал /	P-	Вероятность	Продукт
	мишень	моль	значение		
21	MSMEG_1844	-16,75	0,0019	0,46	conserved hypothetical protein
22	MSMEG_5527	-18,21	0,0019	0,46	conserved hypothetical protein
23	MSMEG_6472	-13,69	0,002	0,46	hypothetical protein
24	MSMEG_4145	-17,78	0,002	0,46	cupin 2 protein
25	MSMEG_3987	-17,66	0,0023	0,46	FAD dependent oxidoreductase
26	MSMEG_3217	-20,15	0,0024	0,46	anthranilate synthase component I
27	MSMEG_1670	-13,09	0,0025	0,46	succinate dehydrogenase, flavoprotein subunit
28	MSMEG_6065	-19,46	0,0026	0,46	Ribosomal protein S18
29	MSMEG_5796	-17,14	0,0026	0,46	Glycine cleavage T0protein
30	MSMEG_2611	-19,19	0,0026	0,46	pyridine nucleotide0disulphide oxidoreductase family protein
31	MSMEG_5383	-14	0,0027	0,46	dehydrogenase/reductase
32	MSMEG_2705	-14,16	0,0027	0,46	hydrogenase expression/formation protein HypE
33	MSMEG_5220	-15,59	0,0027	0,46	esterase/lipase/thioesterase
34	MSMEG_6083	-15,45	0,0027	0,46	base excision DNA repair protein
35	MSMEG_1970	-21,07	0,003	0,45	sigma factor
36	MSMEG_0035	-16,54	0,0031	0,45	FHA domain protein
37	MSMEG_0699	-12,86	0,0032	0,45	conserved hypothetical proline rich protein
38	MSMEG_6222	-17,34	0,0032	0,45	integral membrane protein
		1	nc	MSMEG13916	
1	MSMEG_1748	-8,12	0	0,42	conserved hypothetical protein
2	MSMEG_0351	-7,9	0	0,38	virulence factor mce family protein
3	MSMEG_5987	-7,89	0	0,37	two0component regulator
			nc	MSMEG14614	
1	MSMEG_4695	-57,5	0	0,92	protozoan/cyanobacterial globin family protein
2	MSMEG_0688	-24,81	8E-13	0,46	aspartate aminotransferase
3	MSMEG_4974	-28,75	0	0,39	rrf2 family protein (putative transcriptional regulator)
4	MSMEG_5061	-24,15	0	0,39	Bacterial extracellular solute0binding protein
5	MSMEG 1548	-27 38	0	0.36	propanediol utilization: dehydratase, medium
		27,50	Ŭ	0,50	subunit
			nc	MSMEG14726	
1	MSMEG_2377	-46,98	0	0,6	P49 protein
2	MSMEG_1068	-46,98	0	0,6	regulatory protein
3	MSMEG_0967	-27,11	6,5E-12	0,43	conserved hypothetical protein
4	MSMEG_3770	-23,76	1,1E-09	0,39	argininosuccinate synthase
5	MSMEG_5061	-24,99	2,1E-09	0,39	Bacterial extracellular solute0binding protein
6	MSMEG_1289	-23,81	3,9E-09	0,38	conserved hypothetical protein
/	MSMEG_0030	-28,95	5,4E-09	0,38	
8	MSMEG_6235	-25,09	0,0000002	0,36	thiopurine Somethyltransferase (tpmt) superfamily
			nc	MSMEG15366c	protein
1	MSMEG 5463	-74.29	0	0.92	60phosphogluconate dehydrogenase, NAD0binding
2	MSMEG 1484	-25.32	0	0.43	adenvlate kinase
3	MSMEG 1289	-28.01	9.1E-12	0.36	conserved hypothetical protein
4	MSMEG 5595	-23.54	1.3E-11	0.36	MarR0family protein transcriptional regulator
5	MSMEG 3367	-23.27	4.3E-11	0.36	short0chain dehvdrogenase/reductase SDR
		- , .	nc	MSMEG15379	
1	MSMEG_3770	-23,85	0	0,39	
		• •	nc	MSMEG15794c	
1	MSMEG_2807	-47,15	0,003	0,89	two0component system response regulator
2	MSMEG_0823	-41,85	0,003	0,89	conserved hypothetical protein
3	MSMEG_6567	-23,61	0,0082	0,83	ironOdependent peroxidase
4	MSMEG_4124	-23,99	0,01	0,81	conserved hypothetical protein
5	MSMEG_3191	-24,68	0,01	0,79	conserved hypothetical protein
6	MSMEG_3145	-36,02	0,02	0,79	secreted cell wallOassociated hydrolase
7	MSMEG_0409	-24,42	0,02	0,79	Condensation domain protein
8	MSMEG_6187	-21,13	0,02	0,79	endonuclease III
9	MSMEG_1394	-19,63	0,02	0,77	probable conserved transmembrane protein
10	MSMEG_4974	-18,47	0,02	0,77	rrf2 family protein (putative transcriptional regulator)
11	MSMEG_5383	-23,74	0,02	0,77	dehydrogenase/reductase SDR family protein member 4
Ранг	мРНК Мишень	Е ккал / моль	р- значение	Вероятность	Продукт
----------	----------------	---------------------	----------------	-------------	---
12	MSMEG_3741	-16,29	0,02	0,76	transcriptional regulator
13	MSMEG_4522	-25,14	0,02	0,76	ISMsm2, transposase
14	MSMEG_4880	-20,61	0,02	0,76	methylmalonyl0CoA mutase
15	MSMEG_0053	-18,38	0,03	0,75	conserved hypothetical protein
16	MSMEG_2705	-19,6	0,03	0,75	hydrogenase expression/formation protein HypE
17	MSMEG_3777	-23,64	0,03	0,75	phenylalanyl-tRNA synthetase, beta subunit
18	MSMEG_6065	-24,17	0,03	0,75	ribosomal protein S18
19	MSMEG_5628	-28,9	0,03	0,75	oxidoreductase, short chain dehydrogenase/reductase family protein
20	MSMEG_1851	-15,58	0,03	0,74	tRNA0Sec
21	MSMEG_0883	-24,14	0,03	0,74	amidohydrolase family protein
22	MSMEG_3705	-19,81	0,03	0,74	major facilitator superfamily protein MFS_1
23	MSMEG_1792	-21,48	0,03	0,74	conserved hypothetical protein
24	MSMEG_6298	-25,88	0,03	0,74	malyl0CoA lyase
25	MSMEG_1688	-20,07	0,03	0,74	cupin domain protein
26	MSMEG_6083	-20,45	0,03	0,74	base excision DNA repair protein
27	MSMEG_1844	-17,81	0,03	0,73	conserved hypothetical protein
28	MSMEG_4845	-17,82	0,03	0,73	putative acyl0CoA dehydrogenase
29	MSMEG_4722	-22,55	0,04	0,73	short0chain dehydrogenase
30	MSMEG_6053	-24,91	0,04	0,73	cob(II)yrinic acid a,c-diamide reductase
31	MSMEG_4442	-18,07	0,04	0,73	zinc0binding oxidoreductase
32	MSMEG_5220	-17,99	0,04	0,73	esterase/lipase/thioesterase
33	MSMEG_3179	-22,01	0,04	0,73	pyridoxamine 5'Ophosphate oxidase
34	MSMEG_5527	-16,35	0,04	0,73	conserved hypothetical protein
35	MSMEG_1757	-18,7	0,04	0,73	DEAD/DEAH box helicase
36	MSMEG_0688	-14,9	0,04	0,73	aspartate aminotransferase
37	MSMEG_6259	-24,18	0,04	0,73	ammonium transporter
38	MSMEG_1480	-19,53	0,04	0,72	methyltransferase
39	MSMEG_4179	-21,18	0,04	0,72	probable conserved integral membrane protein
40	MSMEG_4610	-16,74	0,04	0,72	IgiC, putative
41	MSMEG_4035	-20,63	0,04	0,72	citrate synthase
42	MSMEG_5755	-23,61	0,04	0,72	tRNA0Phe
43	MSMEG_4706	-16,34	0,04	0,72	tRNA0Arg
44	MSMEG_4513	-19,75	0,04	0,72	polyketide synthase
45	MSMEG_16/0	-13,67	0,04	0,72	succinate dehydrogenase, flavoprotein subunit
46	MSMEG_0699	-1/,4	0,04	0,72	Conserved hypothetical proline rich protein
47	MSMEG_0241	-20,57	0,04	0,72	MinpL11 protein
48	MSMEG_0451	-14,08	0,04	0,72	oxidoreduciase, FADolinked
49 50	MSMEC 1009	-14,03	0,04	0,72	agylOCoA synthese
51	MSMEG_1098	-20,23	0,04	0,72	ATP dependent protocol Le
52	MSMEG_0652	-23	0,04	0,71	ATP-dependent protease La
52	MSMEG_2022	-22,13	0,04	0,71	conserved hypothetical protein
54	MSMEG 2553	-14,63	0,05	0,71	transcriptional regulator. TetP family protein
55	MSMEG_2333	-20,03	0,05	0,71	conserved hypothetical protein
56	MSMEG_3230	-13,91	0,05	0,71	anthranilate synthese component I
57	MSMEG_5217	-10,41	0.05	0,71	conserved hypothetical protein
58	MSMEG_J210	_13.07	0.05	0,71	nitrilotriacetate monoovygenase component A
59	MSMEG 2637	-1635	0.05	0.71	oxidoreductase
60	MSMEG 2467	-21 33	0.05	0.71	transketolase_central region
61	MSMEG 4111	-17 65	0.05	0.71	alpha0methylacyl0CoA racemase
62	MSMEG 4163	-16.87	0.05	0.7	300x0acyl0[acyl0carrier0protein] reductase
63	MSMEG 1598	-17,12	0,05	0.7	conserved hypothetical protein

Приложение М

Список генов, дифференциально экспрессированных в штамме *M. smegmatis* Δ F6

Таблица Л.1 – Список дифференциально экспрессированных генов в штамме *M. smegmatis* ΔF6 относительно штамма дикого типа (MSM_WT)

Ген	Название	Продукт	Log2FC	р- Значение	FDR
MSMEG_0149	MSMEG_0149	ThiC family protein	4,77	3,32E-06	0,004102114
MSMEG_0150	MSMEG_0150	NAD(P) transhydrogenase beta subunit	4,87	1,51E-05	0,010380558
MSMEG_0151	MSMEG_0151	PntAB protein	5,30	1,24E-06	0,004102114
MSMEG_0152	MSMEG_0152	Alanine dehydrogenase/pyridine nucleotide transhydrogenase	4,61	3,72E-05	0,023307558
MSMEG_0153	panE	2-dehydropantoate 2- reductase	4,03	4,53E-05	0,024029849
MSMEG_0154	pyk	pyruvate kinase	4,08	4,54E-05	0,024029849
MSMEG_0156	MSMEG_0156	transcriptional regulator	3,86	5,89E-05	0,028246876
MSMEG_0157	MSMEG_0157	oxalyl-CoA decarboxylase	5,76	2,20E-06	0,004102114
MSMEG_0158	MSMEG_0158	formyl-coenzyme A transferase	5,51	2,72E-06	0,004102114
MSMEG_0159	MSMEG_0159	formate dehydrogenase	4,90	5,12E-06	0,004584912
MSMEG_0160	MSMEG_0160	formate dehydrogenase	5,27	1,20E-05	0,009199993
MSMEG_0161	MSMEG_0161	formate dehydrogenase	5,15	5,33E-06	0,004584912
MSMEG_0162	MSMEG_0162	NAD-dependent formate dehydrogenase delta subunit	4,92	3,58E-06	0,004102114
MSMEG_0168	MSMEG_0168	formyl-coenzyme A transferase	4,27	6,15E-05	0,028246876
MSMEG_4640	MSMEG_4640	secreted protein	3,83	6,61E-09	4,55E-05

Приложение Н

Оценка транскрипции F6 в мутантном (ΔF6) и комплементированном (ΔF6:F6) штаммах *M. smegmatis*

Рисунок H.1 – (A) Результаты нозерн-блота, демонстрирующие транскрипцию F6 в MSM_WT, ΔF6 и ΔF6:F6 штаммах; (B) Результаты нозерн-блота, демонстрирующие транскрипцию 5S в MSM_WT, ΔF6 и ΔF6:F6 штаммах;

Приложение П

Список предсказанных мРНК мишеней для малой РНК F6 M. smegmatis

Таблица П.1 – Список предсказанных мРНК мишеней для малой РНК F6 *M. smegmatis*; подтвержденная мишень (*MSMEG_4640*) выделена зеленым цветом

Ранг	CopraRNA p-значение	Ген	Е ккал / моль	Позиция мРНК	Позиция нкРНК	Продукт			
1	0,001884	MSMEG_6173	-16,67	15 23	24 32	HAD-IB family hydrolase			
2	0,006281	MSMEG_1403	-16,09	173 182	27 36	cutinase family protein			
3	0,008564	MSMEG_4640	-13,57	180 187	28 35	transglycosylase family protein			
4	0,01995	MSMEG_2084	-14,12	63 76	24 35				
5	0,02293	MSMEG_5264	-17,71	192 200	26 34	GPP34 family phosphoprotein			
6	0,02618	MSMEG_1577	-11,40	65 72	27 34	tRNA (adenosine(37)-N6)- threonylcarbamoyltransferase complex ATPase subunit type 1 TsaE			
7	0,02731	MSMEG_2793	-16,64	102 110	27 35	HAMP domain-containing histidine kinase			
8	0,02733	MSMEG_1535	-13,72	190 197	25 32	type VII secretion integral membrane protein EccD			
9	0,03128	MSMEG_6354	-8,90	237 243	30 36	cutinase family protein			
10	0,04063	MSMEG_6022	-10,04	235 242	29 36	ROK family transcriptional regulator			
11	0,0464	MSMEG_1339	-13,69	136 147	24 35	50S ribosomal protein L33			
12	0,04821	MSMEG_1212	-11,31	63 69	27 33				
13	0,05123	MSMEG_6180	-9,14	186 199	24 36	S1 family peptidase			
14	0,06858	MSMEG_5231	-12,29	8 14	27 33				
15	0,07206	MSMEG_5174	-12,05	150 164	22 36	GntR family transcriptional regulator			
16	0,07236	MSMEG_1945	-8,97	28 37	27 35	potassium channel family protein			
17	0,07373	MSMEG_0423	-5,78	36 43	29 36				
18	0,07731	MSMEG_4293	-12,80	43 50	27 34	bifunctional [glutamine synthetase] adenylyltransferase/[glutamine synthetase]-adenylyl-L-tyrosine phosphorylase			
19	0,07827	MSMEG_5258	-14,04	150 157	28 35	nuclear transport factor 2 family protein			
20	0,07845	MSMEG_4896	-11,10	203 220	26 36	fatty acyl-AMP ligase			

Приложение Р

Транскрипция гена MSMEG_4640 в модели покоя M. smegmatis

Рисунок Р.1 – Оценка транскрипции гена *MSMEG_4640* методом ОТ-ПЦР в модели покоя в штаммах MSM_WT и ΔF6; *p < 0,05, ND – транскрипция не детектирована

Приложение С

Дифференциально экспрессированные гены в *M. tuberculosis* при гиперэкспрессии MTS1338

Таблица С.1 – Дифференциально экспрессированные гены в штамме mtb_pMV261_1338 относительно штамма mtb_pMV261_E в условиях нитрозативного стресса (0,5 мМ DETA NONOate)

Ген	Название	Функция	Продукт	Log2FC	Dadi
Rv0032	bioF2	Could be involved in biotin biosynthesis	Possible 8-amino-7-oxononanoate synthase BioF2	-1,53	1,19E-45
Rv0033	acpA	The carrier of the growing fatty acid chain in fatty acid biosynthesis	Probable acyl carrier protein AcpA (ACP)	-1,91	7,73E-24
Rv0034	Rv0034	Function unknown	Conserved hypothetical protein	-1,89	9,20E-26
Rv0035	fadD34	Involved in lipid degradation	fatty-acid-CoA synthase	-1,97	2,71E-63
Rv0169	mce1A	May be involved in host cell invasion	Mce-family protein Mce1A	-1,59	3,25E-64
Rv0170	mce1B	May be involved in host cell invasion	Mce-family protein Mce1B	-1,59	2,86E-59
Rv0172	mce1D	May be involved in host cell invasion	Mce-family protein Mce1D	-1,54	6,26E-64
Rv0173	lprK	May be involved in host cell invasion	Possible Mce-family lipoprotein LprK	-1,66	2,53E-57
Rv0186A	mymT	Protects cell from copper toxicity	Metallothionein	1,53	1,78E-03
Rv0196	Rv0196	Possibly involved in transcriptional mechanism	Possible transcriptional regulatory protein	1,83	1,97E-51
Rv0251c	hsp	Thought to be involved in the initiation step of translation at high temperature.	Heat shock protein Hsp (heat-stress-induced ribosome-binding protein A)	2,29	4,25E-19
Rv0384c	clpB	Thought to be an ATPase subunit of an intracellular ATP-dependent protease	Probable endopeptidase ATP binding protein (chain B) ClpB (ClpB protein)	1,61	2,73E-12
Rv0448c	Rv0448c	Function unknown	Conserved hypothetical protein	1,64	3,50E-11
Rv0620	galK	Involved in galactose metabolism	Probable galactokinase GalK	2,15	1,06E-06
Rv0623	vapB30	Unknown	Possible antitoxin VapB30	2,09	6,70E-35
Rv0624	vapC30	Unknown	Possible toxin VapC30	1,54	2,75E-20
Rv0724A	Rv0724A	Function unknown	Conserved hypothetical protein	1,59	9,49E-12
Rv0792c	Rv0792c	Involved in transcriptional mechanism	Probable transcriptional regulatory protein	1,80	5,75E-08
Rv0793	Rv0793	Function unknown	Possible monooxygenase	2,40	8,09E-12
Rv0826	Rv0826	Function unknown	Conserved hypothetical protein	2,60	5,19E-07
Rv0827c	kmtR	Involved in transcriptional mechanism	Metal sensor transcriptional regulator KmtR	1,93	5,06E-28
Rv0830	Rv0830	Possible methyltransferase	S-adenosylmethionine-dependent methyltransferase	2,08	4,39E-39
Rv0841	Rv0841	Unknown	Probable conserved transmembrane protein	2,41	1,20E-05
Rv0967	csoR	Involved in transcriptional mechanism	Copper-sensitive operon repressor CsoR	1,80	4,05E-07
Rv0968	Rv0968	Function unknown	Conserved protein	1,72	8,01E-34
Rv1044	Rv1044	Function unknown	Conserved hypothetical protein	1,79	5,88E-19
Rv1048c	Rv1048c	Unknown	Hypothetical protein	1,52	5,78E-18
Rv1157c	Rv1157c	Function unknown	Conserved ala-	-1,87	1,42E-50
Rv1158c	Rv1158c	Function unknown	Conserved hypothetical ala-	-1,83	1,01E-44
Rv1169c	lipX	Function unknown	PE family protein. Possible lipase LipX.	1,67	7,72E-38
Rv1219c	Rv1219c	Involved in transcriptional mechanism.	Probable transcriptional regulatory protein	1,87	8,52E-84
Rv1285	cysD	Involved in sulfate activation pathway.	Probable sulfate adenylyltransferase subunit 2 CysD	1,65	1,68E-59
Rv1386	PE15	Function unknown	PE family protein PE15	1,89	1,65E-42
Rv1387	PPE20	Function unknown	PPE family protein PPE20	1,64	3,42E-59
Rv1395	Rv1395	Involved in transcriptional mechanism	Transcriptional regulatory protein	2,53	7,21E-21
Rv1528c	papA4	May be involved in lipid metabolism.	Probable conserved polyketide synthase	1,92	2,72E-30
Rv1674c	Rv1674c	Involved in transcriptional mechanism	Probable transcriptional regulatory protein	1,73	5,16E-13
Rv1697	Rv1697	Function unknown	Conserved hypothetical protein	-1,66	5,11E-61
Rv1801	PPE29	Function unknown	PPE family protein PPE29	2,69	1,56E-20
Rv1806	PE20	Function unknown	PE family protein PE20	2,15	3,20E-16
Rv1807	PPE31	Function unknown	PPE family protein PPE31	1,70	1,22E-21
Rv1909c	furA	Global negative controlling element	Ferric uptake regulation protein FurA	2,11	1,07E-66
Rv1964	yrbE3A	Unknown	Conserved hypothetical integral membrane protein	1,51	4,12E-15
Rv1989c	Rv1989c	Unknown	Hypothetical protein	1,91	1,60E-34
Rv1990c	Rv1990c	Involved in transcriptional mechanism	Probable transcriptional regulatory protein	2,13	2,53E-15
Rv1991A	mazE6	Unknown	Antitoxin MazE6	1,84	1,40E-06
Rv1991c	mazF6	Sequence-specific mRNA cleavage	Toxin MazF6	1,96	4,89E-08
Rv1994c	cmtR	Involved in transcriptional mechanism	Metal sensor transcriptional regulator CmtR	1,88	8,09E-06
Rv1995	Rv1995	Unknown	Unknown protein	1,66	1,09E-06

Ген	Название	Функция	Продукт	Log2FC	Padj
Rv2013	Rv2013	Required for the transposition of an	Transposase	1.58	1.38E-03
		insertion element		-,	-,,
Rv2016	Rv2016	Unknown	Hypothetical protein	1,65	2,40E-42
Rv2034	Rv2034	Involved in transcriptional regulation	ArsR repressor protein	3,45	1,72E-18
Rv2035	Rv2035	Unknown	Conserved hypothetical protein	2,41	1,27E-14
Rv2036	Rv2036	Unknown	Conserved hypothetical protein	1,50	2,70E-20
Rv2122c	hisE	Involved in histidine biosynthesis	Phosphoribosyl-AMP pyrophosphatase HisE	2,17	4,70E-42
Rv2123	PPE37	Function unknown	PPE family protein PPE37	2,46	2,98E-08
Rv2250A	Rv2250A	Electron acceptor	Possible flavoprotein	1,58	4,57E-20
Rv2250c	Rv2250c	Involved in transcriptional mechanism	Possible transcriptional regulatory protein	1,53	1,51E-11
Rv2327	Rv2327	Function unknown	Conserved protein	1,72	2,03E-64
Rv2641	cadI	Function unknown	Cadmium inducible protein CadI	3,26	1,88E-09
Rv2642	Rv2642	Involved in transcriptional mechanism.	Possible transcriptional regulatory protein	2,79	9,98E-11
D 0//0	a	Involved in transport of arsenic	Probable arsenic-transport integral membrane		0.045.40
Rv2643	arsC	compounds across the membrane	protein ArsC	2,13	3,91E-10
Rv2662	Rv2662	Unknown	Hypothetical protein	2,83	1,02E-20
Rv2875	mpt70	Unknown	Major secreted immunogenic protein Mpt70	2.78	4.23E-19
Rv2963	Rv2963	Unknown	Probable integral membrane protein	1.55	6.30E-05
Rv2989	Rv2989	Involved in transcriptional mechanism	Probable transcriptional regulatory protein	1.95	7.91E-04
Rv3054c	Rv3054c	Function unknown	Conserved hypothetical protein	2.51	5.28E-14
Rv3182	Rv3182	Function unknown	Conserved hypothetical protein	2.24	2.72E-30
Rv3183	Rv3183	Involved in transcriptional mechanism	Possible transcriptional regulatory protein	2.15	3.53E-24
Rv3188	Rv3188	Function unknown	Conserved hypothetical protein	2.08	5.82E-46
Rv3189	Rv3189	Function unknown	Conserved hypothetical protein	1.87	1.26E-51
Rv3334	Rv3334	Involved in a transcriptional mechanism	Probable transcriptional regulatory protein	1.61	1.85E-55
Rv3428c	Rv3428c	Involved in the transposition of the insertion sequence IS1532	Possible transposase	1,92	1,10E-05
Rv3477	PE31	Function unknown	PE family protein PE31	-1,73	1,80E-42
Rv3487c	lipF	Involved in cellular metabolism	Probable esterase/lipase LipF	-1,61	9,64E-48
Rv3657c	Rv3657c	Unknown	Possible conserved alanine rich membrane protein	1,50	2,70E-10
Rv3659c	Rv3659c	Function unknown	Conserved hypothetical protein	2,14	1,72E-07
Rv3660c	Rv3660c	Possibly plays a regulatory role in celular differentiation	Conserved hypothetical protein	2,14	1,04E-09
Rv3751	Rv3751	Sequence integration	Probable integrase (fragment)	1,84	1,44E-10
Rv3839	Rv3839	Function unknown	Conserved hypothetical protein	2,24	2,00E-09
Rv3840	Rv3840	Supposedly involved in transcriptional mechanism	Possible transcriptional regulatory protein	2,10	1,30E-09
Rv3854c	ethA	Activates the pro-drug ethionamide (ETH)	Monooxygenase EthA	1,74	2,54E-75
Rv3862c	whiB6	Involved in transcriptional mechanism	Possible transcriptional regulatory protein WhiB- like WhiB6	1,85	7,06E+03

	~~	-			
Ген	Название	Функция	Продукт	Log2FC	Padj
Rv0136	cyp138	Function unknown	Probable cytochrome P450 138 Cyp138	1,59	2,96E-72
Rv0140	Rv0140	Function unknown	Conserved protein	1,55	1,92E-08
Rv0142	Rv0142	Function unknown	Conserved hypothetical protein	1,80	2,16E-12
Rv0251c	hsn	Thought to be involved in the initiation step	Heat shock protein Hsp (heat-stress-induced	2 32	1,61E-
Rv02510	пзр	of translation at high temperature.	ribosome-binding protein A)	2,52	109
Rv0252	nirB	Involved in nitrate assimilation	Probable nitrite reductase NirB	-2,36	4,94E-28
Rv0253	nirD	Involved in nitrate assimilation	Probable nitrite reductase NirD	-2,17	3,51E-55
Rv0259c	Rv0259c	Function unknown	Conserved hypothetical protein	-1,59	8,42E-23
Rv0260c	Rv0260c	Involved in transcriptional mechanism	Possible transcriptional regulatory protein	-2,32	2,41E-40
Rv0341	iniB	Unknown	Isoniazid inductible gene protein IniB	2,06	7,36E-20
Rv0516c	Rv0516c	Involved in transcriptional mechanism	Possible anti-anti-sigma factor	1,61	4,13E-31
Rv0620	galK	Involved in galactose metabolism	Probable galactokinase GalK (galactose kinase)	2,00	2,55E-05
Rv0623	vapB30	Unknown	Possible antitoxin VapB30	1.91	3.34E-14
Rv0624	vapC30	Unknown	Possible toxin VapC30, Contains PIN domain	1.51	1.19E-05
Rv0792c	Rv0792c	Involved in transcriptional mechanism	Probable transcriptional regulatory protein	1.70	4.87E-30
Rv0793	Rv0793	Function unknown	Possible monooxygenase	2 02	1.10E-19
Rv0826	Rv0826	Function unknown	Conserved hypothetical protein	1.95	5 27E-08
Rv0820	Rv08/1	Unknown	Prohable conserved transmembrane protein	1,95	9,27E 00
Rv0841	grcC2	Possible supplier of polyprepyl diphosphat	Probable colliserved transmemorate protein	1,85	0,74E-04
Rv0989C	By1044	Function unknown	Conserved hypothetical protein	1,99	1,450-07
Rv1044	KV1044	Function unknown	DE familie antein DE12	1,//	4,49E-08
RV1195	PEI3	Function unknown	DE family protein PE15	-2,02	1,00E-99
Rv1196	PPE18	Function unknown	PPE family protein PPE18	-2,49	4,36E-23
Rv1197	esxK	Function unknown	ESAT-6 like protein EsxK	-2,34	4,92E-24
Rv1198	esxL	Unknown	Putative ESAT-6 like protein EsxL	-2,02	4,71E-15
Rv1357c	Rv1357c	Function unknown	Conserved hypothetical protein	1,82	1,77E-01
Rv1361c	PPE19	Function unknown	PPE family protein PPE19	-1,90	3,50E-86
Rv1395	Rv1395	Involved in transcriptional mechanism	Transcriptional regulatory protein	2,01	2,48E-16
Rv1528c	papA4	May to be involved in lipid metabolism	Probable conserved polyketide synthase	1,68	1,47E-21
Rv1542c	glbN	Oxygen transport	Hemoglobin GlbN	-2,59	1,10E-51
Rv1552	frdA	Interconversion of fumarate and succinate	Probable fumarate reductase	1,55	1,65E-04
Rv1801	PPE29	Function unknown	PPE family protein PPE29	2,62	8,24E-17
Rv1909c	furA	Global negative controlling element	Ferric uptake regulation protein FurA	1,97	1,31E-16
Rv1954A	Rv1954A	Unknown	Hypothetical protein	1,84	3,24E-79
Rv1955	higB	Unknown	Possible toxin HigB	1,68	3,21E-08
Rv1989c	Rv1989c	Unknown	Hypothetical protein	1,79	3,86E-37
Rv1990A	Rv1990A	May involved in cellular metabolism	Possible dehydrogenase (fragment)	1,86	9,44E-24
Rv1990c	Rv1990c	Involved in transcriptional mechanism	Probable transcriptional regulatory protein	2.11	2.88E-13
Rv1991A	mazE6	Unknown	Antitoxin MazE6	2.00	6.38E-08
Rv1991c	mazF6	Sequence-specific mRNA cleavage	Toxin MazF6	2.04	6.36E-09
Rv1993c	Rv1993c	Function unknown	Conserved protein	1.62	5 20E-08
Rv1994c	cmtR	Involved in transcriptional mechanism	Metal sensor transcriptional regulator CmtR	2 17	4 32E-07
Rv2034	Rv2034	Involved in transcriptional regulation	ArsR repressor protein	2,17	7.43E-11
Rv2035	Rv2034	Unknown	Conserved hypothetical protein	1 90	1 24E-08
Rv2033	PPE37	Function unknown	PPE family protein PPE37	1,50	3.01E-18
Rv2125	Ry22500	Involved in transcriptional regulation	Possible transcriptional regulatory protein	1,01	A 22E 12
Rv22300	ro ² E	Man ha involved in transport of aming asid	Probable cationic amino acid transport protein	1,75	+,22E-13
$D_{V}2464a$	Dy 2464a	Hydrolyses DNA	Possible DNA glycosylogo	-1,50	1 72E 11
Rv2404C	RV2404C	Function unknown	Conserved protein	1,31	1,/JE-11
KV2400C	KV2400C	Function unknown	Codmium inducible protein Cod	1,85	9,09E-18
KV2641		Function unknown	Caumum inducible protein Cadl	2,00	4,48E-06
Kv2642	KV2642	Involved in transcriptional mechanism	Possible transcriptional regulatory protein	2,23	4,06E-09
Rv2643	arsC	involved in transport of arsenic compounds	Probable arsenic-transport integral membrane	1,82	1,19E-08
D 07/0	DDE 42	across the membrane	protein Arsu	1.54	5.215 40
KV2768c	PPE43	Function unknown	PPE Iamily protein PPE43	-1,54	5,51E-48
Rv2/69c	PE27	Function unknown	PE family protein PE2/	-1,65	1,31E-56
Rv2875	mpt70	Unknown	Major secreted immunogenic protein Mpt70	2,36	9,99E-10
Rv3054c	Rv3054c	Function unknown	Conserved hypothetical protein	2,77	1,53E-21
Rv3182	Rv3182	Function unknown	Conserved hypothetical protein	1,73	1,08E-17
Rv3183	Rv3183	Involved in transcriptional mechanism	Possible transcriptional regulatory protein	1,76	1,31E-16
Rv3188	Rv3188	Function unknown	Conserved hypothetical protein	1,81	8,90E-14
Rv3189	Rv3189	Function unknown	Conserved hypothetical protein	1,56	2,31E-28
Rv3334	Rv3334	Involved in a transcriptional mechanism	Probable transcriptional regulatory protein	1,60	3,60E-60
Rv3428c	Rv3428c	Involved in the transposition	Possible transposase	1,56	3,56E-06
Rv3659c	Rv3659c	Function unknown	Conserved hypothetical protein	2,11	2,69E-28
Rv3741c	Rv3741c	Probably involved in cellular metabolism	Possible oxidoreductase	-1,54	1,92E-40
Rv3742c	Rv3742c	Probably involved in cellular metabolism	Possible oxidoreductase	-1,52	6,98E-43

Таблица С.2 – Дифференциально экспрессированные гены в штамме mtb_pMV261_1338 относительно штамма mtb_pMV261_E в условиях кислотного стресса (pH 5,5)

Ген	Название	Функция	Продукт	Log2FC	Padj
Rv0095c	Rv0095c	Function unknown	Conserved hypothetical protein	-1,64	3,80E-36
Rv0188	Rv0188	Unknown	Probable conserved transmembrane protein	-1,54	2,85E-34
Rv0259c	Rv0259c	Function unknown	Conserved hypothetical protein	-1,66	1,31E-16
Rv0260c	Rv0260c	Could be involved in transcriptional mechanism.	Possible transcriptional regulatory protein	-1,96	1,92E-19
Rv0620	galK	Involved in galactose metabolism	Probable galactokinase GalK (galactose kinase)	2,14	2,01E-08
Rv0791c	Rv0791c	Function unknown	Conserved protein	1,71	1,44E-07
Rv0792c	Rv0792c	Involved in transcriptional mechanism	Probable transcriptional regulatory protein (probably GntR-family)	1,97	7,97E-08
Rv0793	Rv0793	Function unknown	Possible monooxygenase	2,68	4,32E-12
Rv0826	Rv0826	Function unknown	Conserved hypothetical protein	2,32	6,05E-06
Rv0829	Rv0829	Required for the transposition of the insertion element IS1605	Possible transposase (fragment)	-1,63	4,68E-22
Rv1129c	Rv1129c	Involved in transcriptional mechanism	Probable transcriptional regulator protein	2,57	9,06E-93
Rv1130	prpD	Involved in methyl citrate cycle	Possible methylcitrate dehydratase PrpD	1,72	6,27E-50
Rv1131	prpC	Involved in methyl citrate cycle	Probable methylcitrate synthase PrpC	1,73	7,20E-48
Rv1278	Rv1278	Unknown	Hypothetical protein	-1,56	1,15E-59
Rv1279	Rv1279	Probably involved in cellular metabolism	probably electron-transfer-linked.	-1,60	8,90E-73
Rv1395	Rv1395	Involved in transcriptional mechanism	Transcriptional regulatory protein	1,65	1,42E-32
Rv1473	Rv1473	Thought to be involved in active transport	Probable macrolide-transport ATP-binding	1 69	8 35F-69
RV1475	Rv1475	of macrolide across the membrane (export)	protein ABC transporter	1,09	0,552.07
Rv1473A	Rv1473A	Possibly involved in transcriptional mechanism	Possible transcriptional regulatory protein	1,56	2,16E-46
Rv1542c	glbN	Oxygen transport	Hemoglobin GlbN	-1,71	1,94E-15
Rv1665	pks11	Possibly involved in the biosynthesis of secondary metabolites	Chalcone synthase Pks11	-1,62	1,12E-34
Rv1765c	Rv1765c	Function unknown	Conserved hypothetical protein	-1,64	5,91E-40
Rv1790	PPE27	Function unknown	PPE family protein PPE27	1,51	3,23E-19
Rv1806	PE20	Function unknown	PE family protein PE20	-1,71	1,21E-10
Rv1807	PPE31	Function unknown	PPE family protein PPE31	-1,94	8,45E-14
Rv1994c	cmtR	Involved in transcriptional regulation	Metal sensor transcriptional regulator CmtR	1,58	1,69E-30
Rv2015c	Rv2015c	Unknown	Conserved hypothetical protein	-1,65	4,79E-41
Rv2034	Rv2034	Involved in transcriptional regulation	ArsR repressor protein	2,58	1,29E-10
Rv2035	Rv2035	Unknown	Conserved hypothetical protein	1,56	2,54E-05
Rv2422	Rv2422	Unknown	Hypothetical protein	1,75	6,17E-06
Rv2464c	Rv2464c	Hydrolyses DNA	Possible DNA glycosylase	1,57	1,57E-49
Rv2617c	Rv2617c	Unknown	Probable transmembrane protein	-2,43	2,16E-11
Rv2641		Function unknown	Cadmium inducible protein Cadl	2,17	2,49E-18
Rv2642	RV2642	Involved in transcriptional mechanism	Possible transcriptional regulatory protein	1,91	4,79E-41
RV2875	mpt /0		Major secreted immunogenic protein Mpt/0	2,09	1,//E-62
RV3201c	RV3201c	Has both A I Pase and helicase activities	Probable ATP-dependent DNA helicase	-1,51	3,76E-40
RV32290	Der2280-	Lular serve	Possible linoleoyi-CoA desaturase	-1,57	1,13E-62
KV3289C	KV3289C	Unknown Deseible inseles d in Labele animaediais	Possible transmemorane protein	-1,81	2,84E-80
Rv3290c	lat	acid (L-AAA) biosynthesis	Probable L-lysine-epsilon aminotransferase Lat	-1,84	1,85E- 123
Rv3371	Rv3371	May be involved in synthesis of triacylglycerol	Possible triacylglycerol synthase (diacylglycerol acyltransferase)	-1,60	3,53E-30
Rv3659c	Rv3659c	Function unknown	Conserved hypothetical protein	1,70	1,22E-20
Rv3660c	Rv3660c	Possibly plays a regulatory role in celular differentiation	Conserved hypothetical protein	2,05	4,71E-68
Rv3862c	whiB6	Involved in transcriptional mechanism.	Possible transcriptional regulatory protein WhiB- like WhiB6	1,69	1,30E-46

Таблица С.3 – Дифференциально экспрессированные гены в штамме mtb_pMV261_1338 относительно штамма mtb_pMV261_E в условиях окислительного стресса (10 мМ H₂O₂)

Ген	Название	Функция	Пролукт	Log2FC	Dadi
Rv0033	acpA	The carrier of the growing fatty acid chain in fatty acid biosynthesis	Probable acyl carrier protein AcpA (ACP)	-1,57	1,73E-13
Rv0034	Rv0034	Function unknown	Conserved hypothetical protein	-1.53	1.42E-16
Rv0142	Rv0142	Function unknown	Conserved hypothetical protein	1,60	9,41E-05
Rv0168	yrbE1B	Unknown	Conserved integral membrane protein YrbE1B	-1,67	9,30E-40
Rv0169	mce1A	May be involved in host cell invasion	Mce-family protein Mce1A	-1,61	1,28E-45
Rv0196	Rv0196	Involved in transcriptional mechanism	Possible transcriptional regulatory protein	1,56	2,41E-24
Rv0251c	hsp	Thought to be involved in the initiation step of translation at high temperature.	Heat shock protein Hsp (heat-stress-induced ribosome-binding protein A)	2,59	2,33E-68
Rv0384c	clpB	Thought to be an ATPase subunit of an intracellular ATP-dependent protease	Probable endopeptidase ATP binding protein (chain B) ClpB (ClpB protein)	1,69	5,93E-07
Rv0612	Rv0612	Function unknown	Conserved hypothetical protein	1,71	4,04E-17
Rv0620	galK	Involved in galactose metabolism	Probable galactokinase GalK (galactose kinase)	1,50	1,98E-04
Rv0623	vapB30	Unknown	Possible antitoxin VapB30	1,53	1,98E-14
Rv0724A	Rv0724A	Function unknown	Conserved hypothetical protein	1,88	1,32E-19
Rv0725c	Rv0725c	Function unknown	Conserved hypothetical protein	1,86	2,75E-56
Rv0792c	Rv0792c	Involved in transcriptional mechanism	Probable transcriptional regulatory protein	1,59	1,36E-11
Rv0826	Rv0826	Function unknown	Conserved hypothetical protein	2,38	5,61E-07
Rv0830	Rv0830	Possible methyltransferase	Methyltransferase	1,67	4,63E-17
Rv0841	Rv0841	Unknown	Probable conserved transmembrane protein	2,93	6,02E-06
Rv0989c	grcC2	Possible supplier of polyprenyl diphosphate	Probable polyprenyl-diphosphate synthase GrcC2	2,05	2,48E-02
Rv1357c	Rv1357c	Function unknown	Conserved hypothetical protein	2,44	1,42E-16
Rv1395	Rv1395	Involved in transcriptional mechanism	Transcriptional regulatory protein	2,30	1,43E-10
Rv1460	Rv1460	Involved in transcriptional mechanism	Probable transcriptional regulatory protein	1,65	1,03E-27
Rv1528c	papA4	May to be involved in lipid metabolism	Probable conserved polyketide synthase	1,82	1,83E-16
Rv1674c	Rv1674c	Involved in transcriptional mechanism	Probable transcriptional regulatory protein	1,77	3,65E-08
Rv1754c	Rv1754c	Function unknown	Conserved protein	-1,64	3,37E-26
Rv1790	PPE27	Function unknown	PPE family protein PPE27	1,51	1,05E-21
Rv1801	PPE29	Function unknown	PPE family protein PPE29	2,84	1,90E-11
Rv1806	PE20	Function unknown	PE family protein PE20	1,86	1,22E-13
Rv1954A	Rv1954A	Unknown	Hypothetical protein	1,74	4,82E-28
Rv1955	higB	Unknown	Possible toxin HigB	1,52	6,16E-03
Rv1989c	Rv1989c	Unknown	Hypothetical protein	1,99	3,44E-08
Rv1990c	Rv1990c	Involved in transcriptional mechanism	Probable transcriptional regulatory protein	2,04	5,16E-09
Rv1991A	mazE6	Unknown	Antitoxin MazE6	1,76	8,41E-12
Rv1991c	mazF6	Sequence-specific mRNA cleavage	Toxin MazF6	1,77	1,13E-06
Rv1993c	Rv1993c	Function unknown	Conserved protein	1,88	1,15E-03
Rv1994c	cmtR	Involved in transcriptional mechanism	Metal sensor transcriptional regulator CmtR	2,14	4,24E-05
RV2013	RV2013	Required for the transposition	Iransposase	1,74	1,57E-03
RV2034	RV2034	Involved in transcriptional regulation	Arsk repressor protein	3,08	1,56E-14
Rv2033	RV2033	En stien en la seur	DDE familie metain DDE27	2,15	1,47E-09
RV2125 Rv2227	PPE57	Function unknown	Conserved protein	1,90	7,30E-21
Rv2327	DDE 20	Function unknown	DDE family protein DDE20	1,05	5.40E.02
Rv2555C	cadI	Function unknown	Cadmium inducible protein Cadl	2 21	2.03E-04
Rv2642	Rv2642	Involved in transcriptional mechanism	Possible transcriptional regulatory protein	2,21	1,11E-06
Rv2643	arsC	Involved in transport of arsenic compounds across the membrane (export)	Probable arsenic-transport integral membrane	1,82	4,33E-06
Rv2656c	Rv2656c	Unknown	Possible PhiRv2 prophage protein	1.52	671E-18
Rv2662	Rv2662	Unknown	Hypothetical protein	2.88	1.51E-22
Rv2737A	Rv2737A	Function unknown	Conserved hypothetical cysteine rich protein	1.65	6.06E-04
Rv2875	mpt70	Unknown	Major secreted immunogenic protein Mpt70	2,51	3.14E-13
Rv3054c	Rv3054c	Function unknown	Conserved hypothetical protein	3,17	2,14E-09
Rv3061c	fadE22	Function unknown	but involved in lipid degradation	1,52	2,37E-07
Rv3182	Rv3182	Function unknown	Conserved hypothetical protein	2,23	1,14E-17
Rv3183	Rv3183	Involved in transcriptional mechanism.	Possible transcriptional regulatory protein	2,34	1,79E-18
Rv3188	Rv3188	Function unknown	Conserved hypothetical protein	1,59	2,44E-17
Rv3189	Rv3189	Function unknown	Conserved hypothetical protein	1,57	3,52E-18
Rv3659c	Rv3659c	Function unknown	Conserved hypothetical protein	2,02	1,06E-05
Rv3660c	Rv3660c	May play a regulatory role in celular differentiation	Conserved hypothetical protein	2,52	1,34E-46
Rv3751	Rv3751	Sequence integration	Probable integrase (fragment)	1,67	9,81E-09
Rv3839	Rv3839	Function unknown	Conserved hypothetical protein	1,58	3,46E-11
Rv3848	Rv3848	Unknown	Probable conserved transmembrane protein	1.62	8.67E-28

Таблица С.4 – Дифференциально экспрессированные гены в штамме mtb_pMV261_1338 относительно штамма mtb_pMV261_E в контрольных условиях (без стресса)

Подтверждение транскрипции MTS1338 в M. smegmatis

Рисунок Т.1 – Подтверждение транскрипции MTS1338 штамме, трансформированным конструкцией для гетерологичной транскрипции (msm_pMV261_MTS1338) методом количественной OT-ПЦР; ***p < 0,001

Приложение У

Различия в протеомах штамма *M. smegmatis* с гетерологичной транскрипцией MTS1338 и штамма с контрольным вектором

Таблица У.1 – Белки, обнаруженных в протеоме только штамма *M. smegmatis* с гетерологичной транскрипцией MTS1338 (msm_pMV261_1338)

ITFU37 I7FU37 MYCS2 58 37 37 Lysine-tRNA ligase AQQWY4JAQWY4 MYCS2 56 14 14 Uncharacterized protein ITFDS2I/TFDS2 MYCS2 46 9 9 Spermidine/purcescine import ATP-binding protein PotA ITFDS2I/TFDS2 MYCS2 8 9 9 Uncharacterized protein AQQR04 A0QR04 MYCS2 28 5 5 Uncharacterized protein ITGFZ1 I7GFZ1 MYCS2 28 5 5 Uncharacterized protein 17GFZ1 I7GFZ2 MYCS2 24 4 4 Acyl-CoA dehydrogenase FadE33 splA0QP90[G6PD MYCS2 22 8 7 Glucose-6-phosphate 1-dehydrogenase 17FCA1 17FZA1 MYCS2 26 7 7 Pyridoxal phosphate homeostasis protein AQQR86 A0QR86 MYCS2 35 1 1 Uncharacterized protein AQQR86 A0QR86 MYCS2 35 1 1 Uncharacterized protein 17GAW4 I7GAW4 MYCS2 30
A0QWY4/A0QWY4 MYCS2 56 14 14 Uncharacterized protein 17FDS2[17FDS2_MYCS2 46 9 9 Spermidine/putrescine import ATP-binding protein PotA 17FDS2[17FDS2_MYCS2 8 9 9 Uncharacterized protein A0QR04[A0QR04_MYCS2 38 9 9 Ppx/GppA phosphatase family protein 17FFZ1[17FL32_MYCS2 28 5 5 Uncharacterized protein 17GFZ1[17FCS2 22 8 7 Glucose-6-phosphate 1-dehydrogenase FadE33 sp A0QP90 G6PD_MYCS2 22 8 7 Transposase IS4 family protein 17FZA1[17FZA1_MYCS2 26 7 7 Pyridoxal phosphate homeostasis protein A0QR86[A0QR86_MYCS2 27 5 5 Putative acetyltransferase A0QW26[A0QW26_MYCS2 35 1 1 Uncharacterized protein 17GAW4[17GAW4_MYCS2 17 6 6 Cytochrome P450 138 cyp138 17GSCS[17GSC5_MYCS2 28 7 7 Alcohol dehydrogenase Alcohovygenase A0QRX6]A0RW3_MYCS2 14
I7FDS2 I7FDS2 MYCS2 46 9 9 Spermidine/putrescine import ATP-binding protein PotA I7FDS2 I7FDS2 MYCS2 8 9 9 Uncharacterized protein A0QR04 A0QR04 MYCS2 38 9 9 Ppx/GppA phosphatase family protein I7FHX4 I7FHX4 MYCS2 28 5 Uncharacterized protein I7FEXEJ[I7FCH5 MYCS2 24 4 4 Acyl-CoA dehydrogenase FadE33 splA0QP90[G6PD MYCS2 22 8 7 Glucose-6-phosphate 1-dehydrogenase 17FCH5[I7FCH5 MYCS2 26 7 7 Pyridoxal phosphate homeostasis protein A0QR86[A0QR06 MYCS2 35 1 1 Uncharacterized protein A0QR86[A0QR06 MYCS2 35 1 1 Uncharacterized protein A0QR86[A0QR06 MYCS2 36 1 1 Uncharacterized protein A0QR86[A0QR06 MYCS2 37 5 Prative acetyltransferase AOQR85[A0QR06 A0QRYCS2 17 6
I7FI52 I7FI52 MQC04 A0QR04 MYCS2 38 9 9 Uncharacterized protein A0QR04 A0QR04 MYCS2 38 9 9 Ppx/GppA phosphatase family protein I7FHX4 I7FHX4 MYCS2 28 5 5 Uncharacterized protein I7GFZ1 I7GFZ1 MYCS2 24 4 4 Acyl-CoA dehydrogenase FadE33 splA0DP90(G6PD MYCS2 22 8 7 Glucose-6-phosphate 1-dehydrogenase I7FEZA1 T7EX1 MYCS2 26 7 7 Pyridoxal phosphate bmoestasis protein A0QR86 A0QR86 MYCS2 27 5 5 Putative acetyltransferase A0QR86 A0QR86 MYCS2 35 1 1 Uncharacterized protein I7GAW4 I7GAW4 MYCS2 30 4 4 Uncharacterized protein I7GAV4/IJTOAW4 MYCS2 17 6 6 Cytochrome P450 138 cyp138 I7GSC5 I7G5C5 MYCS2 27 9 9 Propionyl-CoA carboxylase A0R0X3 A0R0X3 <t< td=""></t<>
A0QR04 A0QR04_MYCS2 38 9 9 Ppx/GppA phosphatase family protein 17FHX4 17FHX4_MYCS2 28 5 5 Uncharacterized protein 17GFZ1 17GFZ1_MYCS2 24 4 4 Acyl-CoA dehydrogenase FadE33 sp A0QP90[G6PD_MYCS2 22 8 7 Glucose-6-phosphate 1-dehydrogenase 17FCA1[17FZA1_MYCS2 26 7 7 Pyridoxal phosphate homeostasis protein 17GQR8[A0QR86_MYCS2 27 5 5 Putativa exciptlansferase A0QR86[A0QR86_MYCS2 35 1 1 Uncharacterized protein A0QR86[A0QR86_MYCS2 35 1 1 Uncharacterized protein 17GCS1[7GSC4_MYCS2 28 7 7 Alcohol dehydrogenase zine-containing putative 17GSC3[7G5C5_MYCS2 28 7 7 Alcohol dehydrogenase Alcohol dehydrogenase 400RV3[A0R0X3_MYCS2 14 3 2 Alkanesulfonate monoxygenase 400RV1[A0QR71_MYCS2 18 3 3 Acyl-CoA dehydrogenase 17FLV2]I7FLV2_MYCS2 18
I7FHX4 I7FHX4 MYCS2 28 5 5 Uncharacterized protein I7GFZ1 I7GFZ1 MYCS2 24 4 4 Acyl-CoA dehydrogenase FadE33 sp A0QP90[G6PD MYCS2 22 8 7 Glucose-6-phosphate 1-dehydrogenase I7FCH5 MYCS2 17 5 5 Transposase IS4 family protein I7FCH5 MYCS2 26 7 7 Pyridoxal phosphate homeostasis protein AQQR86[A0QR86 MYCS2 26 7 7 Pyridoxal phosphate homeostasis protein AQQR86[A0QR86 MYCS2 35 1 1 Uncharacterized protein AQQR46[A0QR86 MYCS2 30 4 4 Uncharacterized protein I7GAW4[I7GAW4 MYCS2 17 6 6 Cytochrome P450 138 cyp138 I7GSC5[I7G5C5 MYCS2 27 9 9 Propionyl-CoA carboxylase A0R0X3]A0R0X3 MYCS2 14 3 2 Alkanesulfonate monooxygenase A0QR71 A0QR71 MYCS2 18 3<
I7GFZ1 [I7GFZ1 MYCS2 24 4 4 Acyl-CoA dehydrogenase FadE33 spJA0QP90[G6PD MYCS2 22 8 7 Glucose-6-phosphate 1-dehydrogenase I7FCH5[I7FCH5 MYCS2 17 5 5 Transposase IS4 family protein I7FZA1[J7FZA1 MYCS2 26 7 7 Pyridoxal phosphate homeostasis protein AQQR86[AQQR86 MYCS2 27 5 5 Putative acetyltransferase AQQW26[A0QW26 MYCS2 35 1 1 Uncharacterized protein AQQW46[A0QW86 MYCS2 30 4 4 Uncharacterized protein AQQW45[A0QW86 MYCS2 30 4 4 Uncharacterized protein I7GAW4[J7GAW4 MYCS2 17 6 6 Cytochrome P450 138 cyp138 I7G5C5[J7G5C5 MYCS2 28 7 7 Alcohol dehydrogenase zinc-containing putative I7FNF9[J7FNF9_MYCS2 27 9 9 Propionyl-CoA carboxylase A0QR71]AQQR71 MYCS2 14 3 2 Alkanesulfonate monoxygenase A0QR71]AQQR71 MYCS2 18 3 3
sp A0QP90 G6PD MYCS2 22 8 7 Glucose-6-phosphate 1-dehydrogenase 17FCHS J7FCH5 MYCS2 17 5 5 Transposase IS4 family protein 17FZA1 J7FZA1 MYCS2 26 7 7 Pyridoxal phosphate homeostasis protein A0QR86[A0QR86 MYCS2 27 5 5 Putative acetyltransferase A0QW26[A0QW26 MYCS2 35 1 1 Uncharacterized protein A0QW86[A0QNK6 MYCS2 30 4 4 Uncharacterized protein A0QNK6[A0QNK6 MYCS2 17 6 6 Cytochrome P450 138 cyp138 17G5C5]/T6GS5 MYCS2 27 9 9 Propionyl-CoA carboxylase A0R0X3[A0R0X3 MYCS2 14 3 2 Alkanesulfonate monoxygenase A0QR71[A0QR71 MYCS2 18 3 3 Acpl-CoA dehydrogenase A0QW23[A0QWZ3 MYCS2 11 4 4 Xylosidase/arabinosidase A0QWZ3[A0QWZ3 MYCS2 11 4
I7FCH5 I7FCH5 MYCS2 17 5 5 Transposase IS4 family protein I7FZAI I7FZAI MYCS2 26 7 7 Pyridoxal phosphate homeostasis protein A0QR86 A0QR86 MYCS2 27 5 5 Putative acetyltransferase A0QW26 A0QW26 MYCS2 35 1 1 Uncharacterized protein A0QWK6 A0QNK6 MYCS2 30 4 4 Uncharacterized protein 17GAW4 17GAW4 MYCS2 17 6 6 Cytochrome P450 138 cyp138 17G5CS 17GSC5 MYCS2 28 7 7 Alcohol dehydrogenase zinc-containing putative 17FFN9 I7FNF9 MYCS2 27 9 9 Propionyl-CoA carboxylase A0R0X3 A0R0X3 MYCS2 14 3 2 Alkanesulfonate monooxygenase A0QR71 A0QR71 MYCS2 18 3 3 Uncharacterized protein 17FLV2 I7FLV2_MYCS2 18 3 3 Acyl-CoA dehydrogenase AQQZ3 A0QWZ3 A0QZ210/A0QZ10_MYCS2 40 </td
I7FZA1 I7FZA1_MYCS22677Pyridoxal phosphate homeostasis proteinA0QR86/A0QR86MYCS22755Putative acetyltransferaseA0QW26/A0QW26MYCS23511Uncharacterized proteinA0QNK6/A0QNK6MYCS23044Uncharacterized proteinI7GAW4 I7GAW4MYCS21766Cytochrome P450 138 cyp13817GSC5 I7G5C5MYCS22877Alcohol dehydrogenase zinc-containing putative17FNF9 I7FNF9MYCS22799Propionyl-CoA carboxylaseA0QRX3 A0R0X3MYCS21432Alkanesulfonate monoxygenaseA0QR71 A0QR71MYCS22433Uncharacterized protein17FLV2 I7FLV2_MYCS21833Acyl-CoA dehydrogenaseA0QWZ3 A0QWZ3MYCS22144Xylosidase/arabinosidaseA0QWZ3 A0QWZ3MYCS21144Regulatory protein DeoRA0QWZ1 A0QWZ3MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QW18 A0QXH8MYCS21744Zine-binding alcohol dehydrogenaseA0QWC9 A0QWC9MYCS23144Uncharacterized proteinA0QW29 A0QWC9MYCS21122Putative neutral zine metallopeptidaseA0QR18 A0QXH8MYCS21122Formyl-coenzyme A transferaseA0QWC9 A0QWC9MYCS23144Uncharacterized protein<
A0QR86 A0QR86MYCS22755Putative acetyltransferaseA0QW26 A0QW26MYCS23511Uncharacterized proteinA0QNK6 A0QNK6MYCS23044Uncharacterized protein17GAW4 I7GAW4MYCS21766Cytochrome P450 138 cyp13817G5C5MYCS22877Alcohol dehydrogenase zinc-containing putative17FNF9 I7FNF9MYCS22799Propionyl-CoA carboxylaseA0R0X3 A0R0X3_MYCS21432Alkanesulfonate monooxygenaseA0QR71 A0QR71MYCS22433Uncharacterized protein17FLV2 I7FLV2MYCS21833Acyl-CoA dehydrogenaseA0QRX2 A0R2K2MYCS21144Xylosidase/arabinosidaseA0QZ10 A0QZ10MYCS22544Regulatory protein DeoRA0QZ10 A0QZ10MYCS21144Zinc-binding alcohol dehydrogenaseA0QXH8 A0QXH8MYCS21744Zinc-binding alcohol dehydrogenaseA0QXH8 A0QXH8MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9MYCS23144Uncharacterized proteinA0QRL0 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QRL0 A0QRL0_MYCS21122Amino acid carrier proteinA0QRC9 A0QWC9MYCS2722Amino acid carrier proteinA0QRL0 A0QRL0_MYCS231
A0QW26 A0QW26MYCS23511Uncharacterized proteinA0QNK6 A0QNK6MYCS23044Uncharacterized proteinI7GAW4 I7GAW4MYCS21766Cytochrome P450I7G5C5 I7G5C5MYCS22877Alcohol dehydrogenase zinc-containing putativeI7FNF9 I7FNF9_MYCS22799Propionyl-CoA carboxylaseA0R0X3 A0R0X3_MYCS21432Alkanesulfonate monooxygenaseA0R0T1 A0QR71MYCS22433Uncharacterized proteinI7FLV2 I7FLV2MYCS21833Acyl-CoA dehydrogenaseA0R2K2 A0R2K2MYCS21144Xylosidase/arabinosidaseA0QZ10 A0QZ10_MYCS24022Uncharacterized proteinA0QPP9 A0QPP9MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QX18 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0QXH8 A0QXH8_MYCS21122Putative neutral zinc metallopeptidaseA0QRL0 A0QR10MYCS2722A0QRL0 A0QRC9MYCS2112A0QRL0 A0QR10MYCS272A0QRL0 A0QR10MYCS2112A0QRC9 A0QWC9MYCS2331A0QRC9 A0QWC9MYCS2331A0QRC9 A0QWC9MYCS2331A0QRC9 A0QR077MYCS2331A0QR071/A0QR07MYCS2331<
A0QNK6 A0QNK6MYCS23044Uncharacterized protein17GAW4 I7GAW4MYCS21766Cytochrome P450138 cyp13817G5C5 I7G5C5MYCS22877Alcohol dehydrogenase zine-containing putative17FNF9 I7FNF9MYCS22799Propionyl-CoA carboxylaseA0R0X3 A0R0X3MYCS21432Alkanesulfonate monooxygenaseA0R0X1 A0QR71MYCS22433Uncharacterized protein17FLV2 I7FLV2MYCS21833Acyl-CoA dehydrogenaseA0R2K2 A0R2K2MYCS21144Xylosidase/arabinosidaseA0QZ10 A0QZ10MYCS22544Regulatory protein DeoRA0QZ10 A0QZ10MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QXH8 A0QXH8MYCS21744Uncharacterized proteinA0QXH8 A0QXH8MYCS21744Uncharacterized proteinA0QXH8 A0QXH8MYCS21744Clutaminefructose-6-phosphate aminotransferaseA0QXH8 A0QXH8MYCS2722Putative neutral zine metallopeptidaseA0QXH9 A0QRV9MYCS23144Uncharacterized proteinA0QXH9 A0QRU9MYCS21122Formyl-coenzyme A transferaseA0QXH8 A0QRB1MYCS2722Amino acid carrier proteinA0QR672 A0QR672MYCS23311Transcripti
I7GAW4 I7GAW4 MYCS217666Cytochrome P450 138 cyp138I7G5C5 I7G5C5 MYCS22877Alcohol dehydrogenase zinc-containing putativeI7FNF9 I7FNF9_MYCS22799Propionyl-CoA carboxylaseA0R0X3 A0R0X3_MYCS21432Alkanesulfonate monooxygenaseA0QR71 A0QR71_MYCS22433Uncharacterized protein17FLV2 I7FLV2_MYCS21833Acyl-CoA dehydrogenaseA0QR2K2 A0R2K2_MYCS21144Xylosidase/arabinosidaseA0QWZ3 A0QWZ3_MYCS22544Regulatory protein DeoRA0QZ10 A0QZ10_MYCS24022Uncharacterized proteinA0QPP9 A0QPP9_MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0R1W1 A0R1W1_MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9_MYCS23144Uncharacterized proteinA0QRL0 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QWC9 A0QRC9_MYCS23144Uncharacterized proteinA0QRC9 A0QRC9_MYCS23144Uncharacterized proteinA0QRE1 A0QRE1MYCS2722A0R672 A0R672_MYCS23222A0R672 A0R672_MYCS23311A0R672 A0R672_MYCS23311A0R672 A0R672_MYCS23311A0R672 A0R672_MYCS23311A0R672 A0R672_MYCS2<
I7G5C5 I7G5C5MYCS22877Alcohol dehydrogenase zinc-containing putativeI7FNF9 I7FNF9_MYCS22799Propionyl-CoA carboxylaseA0R0X3 A0R0X3_MYCS21432Alkanesulfonate monooxygenaseA0QR71 A0QR71MYCS22433Uncharacterized proteinI7FLV2 I7FLV2_MYCS21833Acyl-CoA dehydrogenaseA0R2K2 A0R2K2MYCS21144Xylosidase/arabinosidaseA0QWZ3 A0QWZ3MYCS22544Regulatory protein DeoRA0QZ10 A0QZ10_MYCS24022Uncharacterized proteinA0QPP9 A0QPP9_MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QXH8 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0QWC9 A0QWC9_MYCS23144Uncharacterized proteinA0QRC9 A0QWC9_MYCS21122Formyl-coenzyme A transferaseA0QRC9 A0QWC9_MYCS21122Kormyl-coenzyme A transferaseA0QRC9 A0QWC9_MYCS21122Amino acid carrier proteinA0QRC9 A0QRC9_MYCS21122Amino acid carrier proteinA0QR672 A0R672_MYCS23222Uncharacterized proteinA0QRC9 A0QRE1_MYCS2722Amino acid carrier proteinA0QR672 A0R672_MYCS23222Uncharacterized proteinA0QR672 A0R672_MYCS23222Amino acid carrier proteinA0QR6
17FNF9 17FNF9MYCS227999Propionyl-CoA carboxylaseA0R0X3 A0R0X3MYCS21432Alkanesulfonate monooxygenaseA0QR71 A0QR71MYCS22433Uncharacterized protein17FLV2 I7FLV2_MYCS21833Acyl-CoA dehydrogenaseA0R2K2 A0R2K2MYCS21144Xylosidase/arabinosidaseA0QWZ3 A0QWZ3MYCS22544Regulatory protein DeoRA0QWZ3 A0QWZ3MYCS22544Glutaminefructose-6-phosphate aminotransferaseA0QZ10 A0QZ10_MYCS21144Zinc-binding alcohol dehydrogenaseA0QXH8 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0R1W1 A0R1W1_MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9_MYCS23144Uncharacterized proteinA0QR61 A0QRL0_MYCS2722Amino acid carrier proteinA0QR672 A0R672_MYCS23222Uncharacterized proteinA0R672 A0R672_MYCS23222Uncharacterized proteinA0R672 A0R672_MYCS23311Transcriptional regulator WhiBA0RTP/ A0QTP7_MYCS23311Transcriptional regulator WhiB
A0R0X3 A0R0X3MYCS21432Alkanesulfonate monoxygenaseA0QR71 A0QR71MYCS22433Uncharacterized protein17FLV2 I7FLV2_MYCS21833Acyl-CoA dehydrogenaseA0R2K2 A0R2K2MYCS21144Xylosidase/arabinosidaseA0QWZ3 A0QWZ3MYCS22544Regulatory protein DeoRA0QWZ3 A0QWZ3MYCS22544Regulatory protein DeoRA0QZ10 A0QZ10_MYCS24022Uncharacterized proteinA0QPP9 A0QPP9MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QXH8 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0R1W1 A0R1W1MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9MYCS23144Uncharacterized proteinA0QR61 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QR672 A0R672MYCS23222Uncharacterized proteinA0R672 A0R672MYCS23311Transcriptional regulator WhiBA0QTP7 A0QTP7MYCS23311Transcriptional regulator WhiB
A0QR71 A0QR71MYCS22433Uncharacterized protein17FLV2 17FLV2_MYCS21833Acyl-CoA dehydrogenaseA0R2K2 A0R2K2MYCS21144Xylosidase/arabinosidaseA0QWZ3 A0QWZ3MYCS22544Regulatory protein DeoRA0QWZ3 A0QWZ3MYCS22544Regulatory protein DeoRA0QWZ3 A0QWZ3MYCS24022Uncharacterized proteinA0QZ10 A0QZ10MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QXH8 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0QXH8 A0QXH8_MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9MYCS23144Uncharacterized proteinA0QRL0 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QRB1 A0QRB1MYCS2722Uncharacterized proteinA0R672 A0R672MYCS23222Uncharacterized proteinA0QTP7 A0QTP7MYCS23311Transcriptional regulator WhiB
I7FLV2 I7FLV2_MYCS21833Acyl-CoA dehydrogenaseA0R2K2 A0R2K2 MYCS21144Xylosidase/arabinosidaseA0QWZ3 A0QWZ3 MYCS22544Regulatory protein DeoRA0QZ10 A0QZ10_MYCS24022Uncharacterized proteinA0QPP9 A0QPP9 MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QXH8 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0R1W1 A0R1W1_MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9_MYCS23144Uncharacterized proteinA0QRL0 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QRB1 A0QRB1_MYCS2722Uncharacterized proteinA0R672 A0R672_MYCS23222Uncharacterized proteinA0QTP7 A0QTP7_MYCS23311Transcriptional regulator WhiB
A0R2K2 A0R2K2MYCS21144Xylosidase/arabinosidaseA0QWZ3 A0QWZ3MYCS22544Regulatory protein DeoRA0QZ10 A0QZ10_MYCS24022Uncharacterized proteinA0QPP9 A0QPP9MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QXH8 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0R1W1 A0R1W1MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9MYCS23144Uncharacterized proteinA0QRL0 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QRB1 A0QRB1MYCS2722Uncharacterized proteinA0R672 A0R672MYCS23222Uncharacterized proteinA0QTP7 A0QTP7MYCS23311Transcriptional regulator WhiB
A0QWZ3 A0QWZ3 MYCS22544Regulatory protein DeoRA0QZ10 A0QZ10_MYCS24022Uncharacterized proteinA0QPP9 A0QPP9 MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QXH8 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0R1W1 A0R1W1_MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9_MYCS23144Uncharacterized proteinA0QRL0 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QRB1 A0QRB1_MYCS2722Uncharacterized proteinA0R672 A0R672_MYCS23222Uncharacterized proteinA0QTP7 A0QTP7_MYCS23311Transcriptional regulator WhiB
A0QZ10 A0QZ10_MYCS24022Uncharacterized proteinA0QPP9 A0QPP9_MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QXH8 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0R1W1 A0R1W1_MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9_MYCS23144Uncharacterized proteinA0QRL0 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QRB1 A0QRB1_MYCS2722Amino acid carrier proteinA0R672 A0R672_MYCS23222Uncharacterized proteinA0QTP7 A0QTP7_MYCS23311Transcriptional regulator WhiB
A0QPP9 A0QPP9MYCS21144Glutaminefructose-6-phosphate aminotransferaseA0QXH8 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0R1W1 A0R1W1MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9MYCS23144Uncharacterized proteinA0QRL0 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QRB1 A0QRB1MYCS2722A0R672 A0R672MYCS23222Uncharacterized protein1Transcriptional regulator WhiBA0QTP7 A0QTP7MYCS23311Transcriptional regulator WhiB1Transcriptional regulator WhiB
A0QXH8 A0QXH8_MYCS21744Zinc-binding alcohol dehydrogenaseA0R1W1 A0R1W1_MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9_MYCS23144Uncharacterized proteinA0QRL0 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QRB1 A0QRB1_MYCS2722Amino acid carrier proteinA0R672 A0R672_MYCS23222Uncharacterized proteinA0QTP7 A0QTP7_MYCS23311Transcriptional regulator WhiB
A0R1W1 A0R1W1MYCS2722Putative neutral zinc metallopeptidaseA0QWC9 A0QWC9MYCS23144Uncharacterized proteinA0QRL0 A0QRL0_MYCS21122Formyl-coenzyme A transferaseA0QRB1 A0QRB1MYCS2722Amino acid carrier proteinA0R672 A0R672MYCS23222Uncharacterized proteinA0QTP7 A0QTP7MYCS23311Transcriptional regulator WhiB
A0QWC9 A0QWC9MYCS23144Uncharacterized proteinA0QRL0 A0QRL0MYCS21122Formyl-coenzyme A transferaseA0QRB1 A0QRB1MYCS2722Amino acid carrier proteinA0R672 A0R672MYCS23222Uncharacterized proteinA0QTP7 A0QTP7MYCS23311Transcriptional regulator WhiB
A0QRL0 A0QRL0_MYCS2 11 2 2 Formyl-coenzyme A transferase A0QRB1 A0QRB1_MYCS2 7 2 2 Amino acid carrier protein A0QR672 A0R672_MYCS2 32 2 2 Uncharacterized protein A0QTP7 A0QTP7_MYCS2 33 1 1 Transcriptional regulator WhiB
A0QRB1 A0QRB1_MYCS2 7 2 2 Amino acid carrier protein A0R672 A0R672_MYCS2 32 2 2 Uncharacterized protein A0QTP7 A0QTP7_MYCS2 33 1 1 Transcriptional regulator WhiB
A0R672 A0R672 MYCS2 32 2 2 Uncharacterized protein A0QTP7 A0QTP7 MYCS2 33 1 1 Transcriptional regulator WhiB
A0QTP7 A0QTP7 MYCS2 33 1 1 Transcriptional regulator WhiB
AUR/H/AUR/H/ MYCS2 27 2 2 Uncharacterized protein
A0R608/A0R608 MYCS2 22 2 1 Transcription regulator FurA
sp A0R2D3 RSEA_MYCS26133_Anti-sigma-E_factor RseA
A0OSB7 A0OSB7 MYCS2 18 2 2 Uncharacterized protein
A0R4N3/A0R4N3 MYCS2 5 2 2 Virulence factor mce family protein
A0ORL1/A0ORL1 MYCS2 10 2 2 Carnitinyl-CoA dehydratase
A00X76/A00X76 MYCS2 9 3 3 L-aspartate oxidase
splA0R3Q8/RNH_MYCS2 21 3 3 Ribonuclease H
A0QX14 A0QX14 MYCS2 16 2 2 Oxidoreductase
A00N03 A00N03 MYCS2 18 2 2 Transcriptional regulator GntR family protein
A0R6K3JA0R6K3 MYCS2 16 1 1 Uncharacterized protein
A0R2Y7/A0R2Y7 MYCS2 32 2 2 Uncharacterized protein
17GCl3ll7GCl3 MYCS2 17 3 3 Glyoxalase/bleomycin resistance protein/dioxygenase
splA0R2D4/SIGE_MYCS2 10 2 2 ECF_RNA polymerase sigma factor SigE
A0R1S1/A0R1S1 MYCS2 10 2 2 Peptidase M24 family protein
A0R1K3/A0R1K3 MYCS2 9 1 1 Uncharacterized protein
A0R7F2IA0R7F2 MYCS2 35 2 2 Transposase
splA00TT1WHB7 MYCS2 50 3 3 Transported regulator WhiB7
A00SX2/A00SX2 MYCS2 13 2 2 Uncharacterized protein
A00XM6/A00XM6/MYCS2 12 2 2 Metal-dependent phosphohydrolase HD subdomain
A0R0F6IA0R0F6 MYCS2 41 2 2 Putative regulatory protein FmdB family protein
A00T85IA00T85 MYCS2 6 1 1 Norsolorinic acid reductase
I7G1U8II7G1U8 MYCS2 27 2 2 MerR-family transcriptional regulator
sp A0QQ48 ECCE3 MYCS2 5 1 1 ESX-3 secretion system protein EccE3

1	5	7
T	\cdot	'

ADQY (90, AQX (92, MYCS2) 9 2 YS N10-methylene-totalydomethanoptenin reductase ADQS18, ADQS18, MYCS2 3 1 1 5-xxxvaleratio delyndogenase ADQS12, ADQS12, MYCS2 18 1 1 Characterized protein ADR214, ADR21, MYCS2 18 1 1 Uncharacterized protein ADR214, ADR21, MYCS2 10 2 2 HYH, endonuclesse family protein ADR216, ADR21, MYCS2 6 1 1 Activity protein ADR216, ADR21, MYCS2 6 1 1 Activity protein ADR216, ADR21, MYCS2 2 1 1 Tonscriptional regulator ADR216, ADR21, MYCS2 2 1 1 Tonscriptional regulator ADR216, ADR21, MYCS2 2 2 Methylanet isomenase/micromerase ADR216, ADR21, MYCS2 20 2 2 Methylanet isomenase/micromerase ADR216, ADR21, MYCS2 10 1 1 Uncharacterized protein ADR216, ADR210, MYCS2 10 1 1 Downal indivity protein	Номер Uniprot	Покрытие (%)	Пептиды	Уникальные пептиды	Продукт
A00283A0QS38 MYCS2 7 2 2 Flavohemoprotein putative A0R2140R124 MYCS2 3 1 1 5 Soxwalarta delydogenase A0R2140R121 MYCS2 8 2 Uncharacterized protein A0R2140R121 MYCS2 6 1 Uncharacterized protein A0R211/A0R21 MYCS2 6 1 Uncharacterized protein A0R211/A0R21 MYCS2 7 1 1 AcceyItransferase SpIAQX6810DD MYCS2 6 1 1 ATP-dependent dehobiotin synthetase BioD A0R21/A0R216 MYCS2 2 1 1 Tanscriptional regulator A0QX5/A0QX5 MYCS2 3 1 1 O-acyI transferase A0QX67/A0QR67 MYCS2 17 1 1 Uncharacterized protein A0QX67/A0QR67 MYCS2 8 2 2 Mathylatod MA-apotein-exscriptionarse A0QX67/A0QR67 MYCS2 9 2 2 Catalase-related protein A0QX67/A0QQK9 MYCS2 4 1 1 Lehantitic delydetase bia acid-inducible protein A0QX69/A0QQQA MYCS2 <td>A0QY69 A0QY69 MYCS2</td> <td>9</td> <td>2</td> <td>2</td> <td>N5 N10-methylene-tetrahydromethanopterin reductase</td>	A0QY69 A0QY69 MYCS2	9	2	2	N5 N10-methylene-tetrahydromethanopterin reductase
AUQRL4 AUQRL4 MYCS2 3 1 1 S-soxvalente delydrogenese AUR324(AUXS1 MYCS2 18 1 1 Uncharaterized protein AUR324(AUXS1 MYCS2 10 2 11 Uncharaterized protein AUR211/AUR21 MYCS2 10 2 111 Aceyltamariserized protein AUQUIL40QUI MYCS2 6 1 1 Aceyltamaferase auQUIL40QUI MYCS2 6 1 1 Aceyltamaferase auQUIL40QUIS MYCS2 2 1 1 Transcriptional regulator AUQR544/AUR464 MYCS2 2 1 1 Descriptional regulator AUQVIS1AUXCS2 2 1 1 Uncharaterized protein AUQVIS1AUXCS2 20 2 2 Machaterized protein AUQVIS1AUXCS2 8 2 2 Machaterized protein AUQVIS1AUXCS2 8 2 2 Machaterized protein AUQVIS1AUXCS2 4 1 1 Uncharaterized protein AUQVIAUAUXON MYCS2 4 1 <t< td=""><td>A0QS38 A0QS38 MYCS2</td><td>7</td><td>2</td><td>2</td><td>Flavohemoprotein putative</td></t<>	A0QS38 A0QS38 MYCS2	7	2	2	Flavohemoprotein putative
AQR324/AQR324 MYCS2 8 2 2 Uncharacterized protein AQR211A0R211 MYCS2 6 1 1 Uncharacterized protein AQR211A0R211 MYCS2 6 1 1 Uncharacterized protein AQQ011A0Q011 MYCS2 7 1 1 Acceptransferase AQQ02510D MYCS2 6 1 1 ArtP-dependent defluibility synthesis BioD AQQ025160D MYCS2 4 1 1 Synthesis AQD751A0QR7 MYCS2 3 1 1 Ocycy transferase AQ0751A0QR67 MYCS2 3 1 1 Ocycy transferase AQ071A0QR67 MYCS2 8 2 2 Mandelate resimation tactions synthesis enters/primerase AQ07A1A0QR7 MYCS2 8 2 2 Mandelate resimations protein AQ0XPAIAQXPX AQ07A1A0QR7 MYCS2 4 1 1 Uncharacterized protein AQ0YPAIAQXPX AQ02FXA0QXPX MYCS2 10 1 1 Dock-family protein macriptional regulator AQ02FXA0QXPX MYCS2 4 1 1 <	A0QRL4 A0QRL4_MYCS2	3	1	1	5-oxovalerate dehydrogenase
ADR7211A0R721 MYCS2 18 1 1 Uncharacterized protein TPR2D/TFR2/TFR2/TFR2/TFR2/TFR2/TFR2/TFR2/TFR2	A0R324 A0R324 MYCS2	8	2	2	Uncharacterized protein
IPTFR2DTFR2 MYCS2 6 1 1 Uncharacterized protein ADQD1ADQ011 MYCS2 7 1 1 Acev]transferase ADQD1ADQ011 MYCS2 7 1 1 Acev]transferase ADQDX60BDD MYCS2 6 1 1 APPELGANRES Biol ADRE64/ADRE64 MYCS2 4 1 1 Sensor histidine kinase ADRE64/ADRE64 MYCS2 3 1 1 Decyl transferase ADQTX11ADVIS MYCS2 4 1 1 Sugar phosphate isonerase/pimerase ADQR71ADQR7 MYCS2 8 2 2 Mandbate recense/pimerase ADQNA[ADQR04 MYCS2 8 2 2 Mandbate recense/pimerase ADQVM1[ADQNO4 MYCS2 4 1 1 Lobatranscriptional regulator ADQZ1ADAQZI& MYCS2 10 1 1 Deck-family protein AQQZ1ADQZI ADQZ1ADQZI & MYCS2 4 1 1 Labatranscriptional regulator <	A0R721 A0R721 MYCS2	18	1	1	Uncharacterized protein
ADR.IBT/ADR.IBT/MYCS2 10 2 1 1 Acceptimedopular ADQOIIIADQUI MYCS2 7 1 1 ACPLATIONES 6 1 1 ATP-dependent detabolisin synthetase BioD ADREDAGMED MYCS2 6 1 1 Transcriptional regulator ADREDAGMERA 1 1 Sensor histidine kinase ADREDAGMERA ADREDAGMERA <td>I7FFR2 I7FFR2 MYCS2</td> <td>6</td> <td>1</td> <td>1</td> <td>Uncharacterized protein</td>	I7FFR2 I7FFR2 MYCS2	6	1	1	Uncharacterized protein
ADQQUI ADQQ1I MYCS2 7 1 1 Acetyltransferase pADQX66BDD MYCS2 6 1 1 ATR-dependent dethiobioin synthetase BioD ADRE46IA0R646 MYCS2 2 1 1 Transcriptional regulator ADQX15/ADQXU5 MYCS2 3 1 0 Genesity transferase ADQX15/ADQXU5 MYCS2 3 1 0 Genesity transferase ADQRT/IADQK77 MYCS2 1 1 Uncharactrized protein ADREAJADQVM1 MYCS2 2 2 Maffeldater racernase/muconate lactonizing enzyme ADQTSI/ADQVM1 MYCS2 8 2 2 Maffeldater racernase/muconate lactonizing enzyme ADQTSI/ADQVM1 MYCS2 9 2 2 Catalase-related peroxiase ADQTSI/ADQVM1 MYCS2 10 1 1 DeoR-family protein ADQTSI/ADQVM1 MYCS2 4 1 1 Carbity and family protein ADQTSI/ADQX18 MYCS2 4 1 1 Carbity and family protein ADQTSI/ADQX21 MYCS2 4 1 1 Carbity and family protein	A0R1B7 A0R1B7 MYCS2	10	2	2	HNH endonuclease family protein
ph/d00266/BIOD_MYCS2 6 1 ATP-dependent detublishion synthetase BioD A0R246/AR2L6_MYCS2 4 1 Sensor histidine kinase A0R246/AR2L6_MYCS2 2 1 Transcriptional regulator A0R246/AR2L6_MYCS2 3 1 0-acyl transferrase A0Q1Y11A0VCS2 4 1 Sugar phosphate isomerase/epimerase A0R0A4/ARAMYCS2 20 2 Methylated-DNAprotein-cystein methyltransferrase A0R0A4/ARAMYCS2 8 2 2 Mandelate racemase/epimerase A0R0A4/ARAMYCS2 9 2 2 Catalase-releted protein A0QTKIA A0QYCS 4 1 1 Deck-family protein transcriptional regulator A0QXPAIAOQXOP MYCS2 16 2 2 Nitroreductase A0QXQBAOQXOP MYCS2 4 1 1 L-cambridin dehydratase/bile acid-inducible protein F A0R0XBAOXOP MYCS2 4 1 1 L-admity protein transcriptional regulator A0R0XBAOXOP MYCS2 5 1 1 Transcriptional regulator	A0OOJ1 A0OOJ1 MYCS2	7	1	1	Acetvltransferase
ANBELIGAMBELG MYCS2 4 1 1 Sensor histidine kinase ANB646AMR64 MYCS2 2 1 1 Transcriptional regulator ANDCTY1 MYCS2 3 1 1 O-acyl transferase ANDRTY1 MYCS2 4 1 Sugar phosphate iomersac/pinemase ANDRTY1 MYCS2 4 1 Uncharacterized protein ANDRAJADROACT MYCS2 2 2 Maffeldetar recensac/muconate lactonizing enzyme AOQTS1/ANQAGYN MYCS2 4 1 1 Uncharacterized protein AOQTS1/ANQAGYN MYCS2 4 1 1 Uncharacterized protein AOQTS1/AOQTS0 MYCS2 4 1 1 Learmitine dehythratise-bite acid-inducible protein AOQTS1/AOQTS0 MYCS2 4 1 1 Learmitine dehythratise-bite acid-inducible protein F AOQZB1/AOQXO9 MYCS2 4 1 1 Learmitine dehythratise-bite acid-inducible protein F AOREDSIANESA MYCS2 7 1 1 Learmitine dehythratise-bite acid-inducible protein F AOREDSIANESA MYCS2 7	sp A0OX66 BIOD_MYCS2	6	1	1	ATP-dependent dethiobiotin synthetase BioD
A0BK64/A0Rc46 MYCS2 2 1 1 Transcriptional regulator A0QUXIS/A0QUVS MYCS2 3 1 1 O-quy transforse A0QUXIS/A0QUS MYCS2 4 1 1 Sugar phosphate isomerase/puicemase A0QUXIS/A0QUS MYCS2 20 2 2 Methylated-DNAprotein-cysteine methyltransferase A0QUXIS/A0QUX MYCS2 8 2 2 Methylated-DNAprotein-cysteine methyltransferase A0QUXIS/A0QUX MYCS2 4 1 1 Uncharacterized protein A0QUXIS/A0QUX MYCS2 9 2 2 Catalase-related peroxidase A0QUXIS/A0QUX MYCS2 10 1 1 Decen-family protein A0QUXIS/A0QUX MYCS2 4 1 1 L-carnitine dehydratse-hite acid-inducible protein F A0X28/A0RD32 MYCS2 4 1 1 Hetracycline-resistance determinant TetV A0R28/A0RD32 MYCS2 4 2 2 Cytochrome P450 A0R1A0QUTS MYCS2	A0R2L6 A0R2L6 MYCS2	4	1	1	Sensor histidine kinase
ADQUXUS/ADQXUS_MYCS2 3 1 1 O-acyl transfersas ADQTY1/ADQRT7_MYCS2 4 1 Sugar phosphate isomense/epimense ADQRC7/ADQRC7_MYCS2 17 1 Uncharacterized protein ADQNQ4/ADQNA4_MYCS2 20 2 Methylated-DNA-protein-cysteine methyltransferses ADQNQ4/ADQNQ4 MYCS2 8 2 2 ADQYM1/ADQYS1 WYCS2 9 2 2 ADQYM1/ADQYM1 MYCS2 10 1 Uncharacterized protein ADQYM1/ADQX15 MYCS2 16 2 2 Nitroreductase ADQXS16/ADQX5 MYCS2 16 2 2 Nitroreductase ADQXS16/ADQX67 MYCS2 4 1 1 L-carmitine dehydratase/bile acid-inducible protein F ADRX54/ADRX54 MYCS2 7 1 1 Luciferase ADRX51/ADRX5 MYCS2 7 1 1 Luciferase ADRX51/ADRX5 MYCS2 5 1 1 Transcriptional regulator Luck family protein	A0R646 A0R646 MYCS2	2	1	1	Transcriptional regulator
ANOTYI JAQOTYI MYCS2 4 1 Sugar phosphate is concrase/epimerase A00R074 MOCS7 YCS2 1 1 Uncharacterized protein A00R074 MOCS2 20 2 Mathylated-DNA-protein-cysteine methyltransferase A00R074 MOCN24 WCS2 8 2 2 A00TK04 A0QN04 MYCS2 4 1 1 A0QTK04 A0QYN04 MYCS2 9 2 2 A0QTK04 A0QYN04 MYCS2 9 2 2 A0QYS1A MOQXS2 10 1 1 DecR-family protein mascriptional regulator A0QXS91A0QXQ9 MYCS2 4 1 1 L-carmitine dehydratase/bite acid-inducible protein F appA02021BA02FS MYCS2 4 1 1 Earlier A0R1S1A0R1Y5 MYCS2 5 1 1 Tetracycline-resistance determinant TelV A0R1S1A0R1Y5 MYCS2 7 1 1 Laciferase A0R1S1A0R1Y5 MYCS2 7 1 1 BARTescresistance determinant TelV	A0QXU5 A0QXU5 MYCS2	3	1	1	O-acyl transferase
ADQ BC7/LOORG7_MYCS2 17 1 1 Uncharacterized protein A0R0A4/A0R0A4_MYCS2 20 2 2 Methylated-DNAprotein-cysteine methyltransferase A0QYC4/A0QNQ4_MYCS2 8 2 2 Methylated-DNAprotein-cysteine methyltransferase A0QYTMI_MYCS2 8 2 2 Mandelate racernase/muconate lactonizing enzyme A0QYTMI_MOQYMI_MYCS2 9 2 2 Catalase-related proxidase A0QYTMI_MOQYMI_MYCS2 10 1 1 DeoR-family protein transcriptional regulator A0QZIS_MOQXQ9_MYCS2 4 1 1 L-armitine dehydratase/ble acid-inducible protein F A0RS34/A0RS4 MYCS2 4 1 1 L-armitine dehydratase/ble acid-inducible protein F A0RS42/A0RX9 MYCS2 4 1 1 L-armitine eresistance determinant TeV A0R3X2/A0RX2 7 1 1 Luciferase A0R3X2/A0RX2 A0R3X2/A0RX2 5 1 1 Transcriptional regulator LuxR family protein A0R3X2/A0RX36 MYCS2 5 1 1	A00TY1 A00TY1 MYCS2	4	1	1	Sugar phosphate isomerase/epimerase
ADBROAL ADVES2 20 2 Methylated-DNAprotein-cysteine methyltransferase ADQINQ4/AQQNQ4 MYCS2 8 2 2 Mandelateracemase/meconical lactonizing enzyme ADQTIK0/AQQTK0 MYCS2 4 1 1 Uncharatectrized protein ADQTS/JAQQTS MYCS2 9 2 2 Catalase-related peroxidase ADQTS/JAQQTS MYCS2 10 1 1 DeoR-family protein transcriptional regulator ADQXS9/ADQXOP MYCS2 4 1 1 L-camitine dehydratase/bile acid-inducible protein F ADQXS9/ADQXOP MYCS2 4 1 1 Cabrbaif family protein transcriptional regulator ADQXS9/ADQXOP MYCS2 4 1 1 Hydrogrammater ADRPS/AQRS12 7 1 1 Eucremater ADRIPS/AQRS12 ADRIPS/AQRS12 5 1 1 Transcriptional regulator LaxR family protein ADRIPS/AQR12 7 1 1 Phologychaware ADRIPS/AQRAPMYCS2 ADR12/AQRD14 MYCS2	A00RG7 A00RG7 MYCS2	17	1	1	Uncharacterized protein
ADQNQ4 ADQNQ4 MYCS2 8 2 2 Mandelate racemase/muconate lactonizing enzyme ADQTKI/ADQYIM MYCS2 4 1 1 Uncharatectrized protein ADQYM1 ADQYM1 MYCS2 9 2 2 Catalase-related proxima ADQXISI/ADQYM1 MYCS2 16 2 2 Nitroreductase ADQZISI/ADQXD MYCS2 4 1 1 L-carniting debydrates/bile acid-inducible protein F ADRS4JA0R5S4 MYCS2 4 1 1 C-aib/baif family protein ADRS4JA0R5X4 MYCS2 4 1 1 L-carniting debydrates/bile acid-inducible protein F ADR3X2/DR25 MYCS2 7 1 1 Luciferase ADR3X2/DR25 MYCS2 7 1 1 Luciferase ADQTB/ADQT19 MYCS2 5 1 1 Transcriptional regulator LuxR family protein ADQSX6/ADQTS2 12 1 1 Exatrice Mycolase MSNEG 3995/MSMEI 3903 ADQTSI/ADQT9 MYCS2 7 1	A0R0A4 A0R0A4 MYCS2	20	2	2	Methylated-DNAprotein-cysteine methyltransferase
A0QTK0 A0QTK0 MYCS2 4 1 1 Uncharacterized protein A0QYM1A0QYM1 MYCS2 9 2 Catalase-created peroxidase A0QS75/A0QS75 MYCS2 10 1 1 DeoR-family protein transcriptional regulator A0QXS9/A0QXO9 MYCS2 16 2 2 Nitroreductase A0QXQ9/A0QXO9 MYCS2 4 1 1 L-carnitine dehydratase/bite acid-inducible protein F A0X29/A0QXO9 MYCS2 4 1 1 Catibase/family protein A0R2P5/A0R2P5 MYCS2 4 1 1 L-carnitine dehydratase/bite acid-inducible protein F A0R2P5/A0R2P5 MYCS2 4 2 Cytochrome P450 A0R2P5/A0R2P5 A0R1VS/A0R1V5 MYCS2 7 1 1 Etracycline-resistance determinant TetV A0QTB/A0QZE3/MS26 MYCS2 1 1 ESAT-6-like protein A0QTB/A0QZDTS/MYCS2 A0QSE/A0QZE3/MYCS2 1 1 Phosphate transporter ITTRNV4/MYCS2 6 1 1 Aphotopyrimidima	A00N04 A00N04 MYCS2	8	2	2	Mandelate racemase/muconate lactonizing enzyme
Aboy MI (AOQYM) MYCS2 9 2 2 Catalase-related peroxidase AOQSTS/AOQST5 MYCS2 10 1 1 DeoR-ramity protein transcriptional regulator AOQZIS/AOQZB MYCS2 16 2 2 Nitroreductase AOQZIS/AOQZB MYCS2 4 1 1 L-camitine dehydratase/bile acid-inducible protein F AORXS/ADR2MS4 MYCS2 4 1 1 Caib/baif family protein Sp/AOQZU2[HOA1 MYCS2 4 1 1 L-camitine dehydratase/bile acid-inducible protein F AORXS/ADR2MSX MYCS2 5 1 1 Transcriptional regulator LuxR family protein AORXS/ADR3Z MYCS2 5 1 1 Transcriptional regulator LuxR family protein AORXS/ADR3Z MYCS2 5 1 1 Antibiotic biosynthesis monocoxygenase AORXS/ADR4Z 7 1 1 Antibiotic biosynthesis monocoxygenase AOQXSIA(AORC2 7 1 1 Antibiotic biosynthesis monocoxygenase AOQXSIA(AORC2	A00TK0 A00TK0_MYCS2	4	1	1	Uncharacterized protein
Abs. Description Description Description Abs.2514/Ab02375 MYCS2 10 1 1 Description Description Family protein	A00YM1/A00YM1/MYCS2	9	2	2	Catalase-related peroxidase
Interpretent Interpretent Interpretent A0Q2B[A0QZI8 MYCS2 16 2 2 Nitroreductase A0QXB[A0QZI8 MYCS2 4 1 1 L-caritime dehydratase/bile acid-inducible protein F A0RS54[A0QX25 4 1 1 L-caritime dehydratase/bile acid-inducible protein F A0RS54[A0RS54] MYCS2 4 1 1 4-hydroxy-2-oxovalerate aldolase 1 A0R326[A0R322_MYCS2 5 1 1 Tetrascriptional regulator LuxR family protein A0R326[A0R326_MYCS2 7 1 1 Lucriferase A0R175[A0R175 MYCS2 4 2 2 Cytochrome P450 A0R326[A0R326 MYCS2 5 1 1 Transcriptional regulator LuxR family protein A0Q2B1/A0QT19 MYCS2 12 1 ESAT-6-like protein A0QSM6[A0QCS0 A0QSM6[A0QCS0 MYCS2 7 1 1 Antibiotic biosynthesis monoxygenase A0QSM6[A0QC68 MYCS2 6 1 1 Alcohol dehydrogenase zinc-binding domain protein A0QYC8[A0QV68 MYCS2 2 <td>A00875 A00875_MYC82</td> <td>10</td> <td>1</td> <td>1</td> <td>DeoR-family protein transcriptional regulator</td>	A00875 A00875_MYC82	10	1	1	DeoR-family protein transcriptional regulator
AugxQp1AugxXQp MYCS2 4 1 1 L-carnitine dehydratase/bile acid-inducible protein F AugXQp1AugXQp MYCS2 4 1 1 Cabb/bait family protein ppIA0gZU2[H0A1 MYCS2 4 1 1 Cabb/bait family protein augXQp1AugXQp MYCS2 4 1 1 L-carnitine dehydratase/bile acid-inducible protein A0R1V5[AUR1VS MYCS2 5 1 1 Terascritine dehydratase/bile acid-inducible protein A0R1V5[AUR1VS MYCS2 7 1 1 Luciferase A0R1V5[AUR1VS MYCS2 5 1 1 Terascriptional regulator LuxR family protein A0QTD14/A0QR1P MYCS2 12 1 1 ESATe-file protein splA0QZE3[Y3995 MYCS2 3 1 1 Putative hydrolase MSMEG 3995/MSME1 3903 A0QRC1/A0QRC2 MYCS2 4 1 1 Antibiotic biosynthesis monoxygenase A0QRC2/A0QRC2 YCS2 4 1 1 Antibiotic biosynthesis monoxygenase A	A00ZI8 A00ZI8 MYCS2	16	2	2	Nitroreductase
Investiging (a) Initial Initial <thinitial< th=""> Initial <thinitial< th=""></thinitial<></thinitial<>		4	1	1	L-carnitine dehydratase/bile acid-inducible protein F
Interpretation Interpretation Interpretation applaQ2U2[HOA1 MYCS2 4 1 1 4-hydroxy-2-oxovalerate aldolase 1 A0R2PS/A0R2PS MYCS2 5 1 1 Terracycline-resistance determinant TetV A0R1VS/A0R3X2 MYCS2 7 1 1 Luciferase A0R1VS/A0R1X5 MYCS2 4 2 Cytochrome P450 A0R1VS/A0R1X5 MYCS2 5 1 1 Terrascriptional regulator LuxR family protein A0QTD9/A0QT19 MYCS2 12 1 1 ESAT-6-tike protein ap/A0QZE3/MOQRC2 MYCS2 7 1 1 Antibiotic biosynthesis monooxygenase A0QRC1/A0QRC2 MYCS2 4 1 Phoosphate transporter 1 17FNV4[I7FNV4 MYCS2 2 1 1 Major facilitator superfamily motein MFS 1 A0QR13/A0QR05 MYCS2 8 1 1 EMarkanese A0QR13/A0QR13 MYCS2 5 1 1 TerR-family protein transcriptional regulator <	A0R5S4IA0R5S4_MYCS2	4	1	1	Caib/baif family protein
Approx Approx<	spla007U2H0A1_MVCS2	4	1	1	4-bydrovy-2-ovovalerate aldolase 1
ADREAT D I I Itelacytemestsame deciminant fet/V ADR3X2/ADR3X2 MYCS2 7 1 1 Luciferase ADR3X2/ADR3X2 MYCS2 4 2 2 Cytochrome P450 ADR3Z6/ADR3X2 MYCS2 5 1 1 Transcriptional regulator LuxR family protein ADQTEJ/ADQT19 MYCS2 12 1 ESAT-6-like protein splA0QZE3/Y395 MYCS2 3 1 1 Putative hydrolase MSMEG 3995/MSMEI 3903 AOQSM6/AOQSM6 MYCS2 7 1 1 Atcibiotic biosynthesis monoxygenase AOQRC1/AOQCE2/ADQRC2 WYCS2 6 1 1 Alcohol dehydrogenase zine-binding domain protein AOQYG1/ADQT04 MYCS2 2 1 1 Dihydropyrimidinase AOQRX13/AOQTU4 MYCS2 2 1 1 Major facilitator superfamily protein MFS 1 AOQRX13/AOQTU4 MYCS2 5 1 1 Transcriptional regulator AOQZES13/AOQT2 13 1 Uncharacterized protein <td>AOR2P5 AOR2P5 MVCS2</td> <td>5</td> <td>1</td> <td>1</td> <td>Tetracycline_resistance determinant TetV</td>	AOR2P5 AOR2P5 MVCS2	5	1	1	Tetracycline_resistance determinant TetV
ANDRAL/MONTA Interest Interest Interest Interest AOR IVS JAORI VS MYCS2 4 2 Cytochrome P450 AOR IVS JAORI VS MYCS2 5 1 1 Transcriptional regulator LuxR family protein AOQTJ9JAOQTJ9 MYCS2 1 1 ESAT-6-like protein Systems aOQSM6JAOQSM6 MYCS2 3 1 1 Putative hydrolase MSMEG 3995/MSMEI 3903 AOQSM6JAOQSM6 MYCS2 7 1 1 Antibiotic biosynthesis monooxygenase AOQSM6JAOQSM6 MYCS2 6 1 1 Antibiotic biosynthesis monooxygenase AOQSM6JAOQSM6 MYCS2 2 1 1 Antibiotic biosynthesis monooxygenase AOQY68JAOQY68 MYCS2 2 1 1 Antibiotic biosynthesis monooxygenase AOQY68JAOQY68 MYCS2 2 1 1 Microsynthesis monooxygenase AOQTU4JAOQTU4 MYCS2 2 1 1 Microsynthesis monooxygenase AOQTU4JAOQTU4 MYCS2 5 1	$\frac{A0R215 A0R215 MTCS2}{A0R3X2 A0R3X2 MVCS2}$	7	1	1	Luciferase
ANNE 13/ANT 13	AORSX2 AORSX2 MTCS2	1	2	1	Cytochrome P450
AND COLONNESS J I <thi< th=""> I <thi< th=""> <th< td=""><td>AORIVS AORIVS MICS2</td><td></td><td>1</td><td>1</td><td>Transcriptional regulator LuxP family protein</td></th<></thi<></thi<>	AORIVS AORIVS MICS2		1	1	Transcriptional regulator LuxP family protein
Avg. 19/Avg. 19/Avg. 19/Avg. 19/Avg. 10/Avg. 10		12	1	1	ESAT 6 like protein
Sp[A02L2] 13993 MTCS23111Plautive hydrolase Mishind 3993/MSML1 3903A0QSM6[A0QSM6_MYCS2711Antibiotic biosynthesis monooxygenaseA0QRC2[A0QRC2_MYCS2411Phosphate transporter17FNV4[I7FNV4_MYCS2611Alcohol dehydrogenase zinc-binding domain proteinA0QY68[A0QY68_MYCS2211DihydropyrimidinaseA0QN13[A0QN13_MYCS2811ISMsm2 transposaseA0QS13[A0R513_MYCS2211Major facilitator superfamily protein MFS 1A0QT44[A0QTU4_MYCS2511TetR-family protein transcriptional regulatorA0QZ75[A0QZT5_MYCS21311Uncharacterized proteinA0QR32[A0QR32_MYCS2511Cytochrome P450A0RS12[A0QR39_MYCS21222Uncharacterized proteinA0QS13[A0QR39_MYCS23311Transcriptional regulator HTH 3 family proteinA0R3P1[A0R391_MYCS23311Transcriptional regulator HTH 3 family proteinA0Q33[NUCD_MYCS2211NADH-quinone oxidoreductase subunit DsplA0Q038[ECCA3_MYCS2111ESX-3 secretion system protein EccA3A0QT12[A0QTH2_MYCS21811Uncharacterized proteinA0QS3[A0QS3_MYCS2211Uncharacterized proteinA0QS3[A0QS3_MYCS2111Uncharacterized proteinA0QS3[A0QS3_MYCS2211Uncharacterized protein </td <td>aplA007E2IV2005_MVCS2</td> <td>12</td> <td>1</td> <td>1</td> <td>Dutative hydrologe MSMEC 2005/MSMEL 2002</td>	aplA007E2IV2005_MVCS2	12	1	1	Dutative hydrologe MSMEC 2005/MSMEL 2002
AOQSM0[AOQSM0] MTCS211Anibolic biosynthesis monocygenaseAOQRC2]AOQRC2411Phosphate transporter17FNV4[I7FNV4_MYCS2611Alcohol dehydrogenase zinc-binding domain proteinAOQRC2]AOQRC3211DihydropyrimidinaseAOQR13[AOQN13_MYCS2811ISMsm2 transposaseAOR513[AOR513_MYCS2211Major facilitator superfamily protein MFS 1AOQTU4[AOQTU4_MYCS2511TetR-family protein transcriptional regulatorAOQTS[AOQR32_MYCS21311Uncharacterized proteinAOQR32[AOQR42_MYCS2511Cytoehrome P450AOR5N2[AORSN2_MYCS21222Uncharacterized proteinAOR31[AORSN2_MYCS212211AOR31[AORSN2_MYCS2211Glutamine synthetasesp[AOQU33]NUOD MYCS2211NADH-quinone oxidoreductase subunit Dsp[AOQU38]ECCA3_MYCS2111RubredoxinAOQR50[AOQST0_MYCS2211Uncharacterized proteinAOQST0[AOQST0_MYCS2211Uncharacterized proteinAOQST0[AOQST0_MYCS2211Mycocerosic acid synthaseAOQR31[AOQST0_MYCS2311Uncharacterized proteinAOQST0[AOQST0_MYCS2211Mycocerosic acid synthaseAOQR93[AOQRW3_MYCS2311Uncharacterized proteinAOQR93[AOQRW3_MYCS2	AOOSM6IAOOSM6_MVCS2	7	1	1	Antibiotic biosynthesis monocyngonese
AUQRC2/INURC2_MYCS24111Priosphate transporterAUQY68/AUQY68MYCS2211Alcohol dehydrogenase zinc-binding domain proteinAUQY68/AUQY68MYCS2211DihydropyrimidinaseAUQN13/AUQN13MYCS2811ISMsm2 transposaseAUQT513/AUQT14MYCS2211Major facilitator superfamily protein MFS 1AUQT51/AUQT15MYCS21311Uncharacterized proteinAUQT51/AUQT15MYCS21311Uncharacterized proteinAUQT51/AUQT15MYCS2511Cytoehrome P450AUQR32/AUQR32MYCS21222Uncharacterized proteinAUQR31/AURSN2MYCS21222Uncharacterized proteinAUQT2/AUQY12MYCS2211Glutamine synthetasesplA0QU33/NUODMYCS2211NADH-quinone oxidoreductase subunit DsplA0QU33/NUODMYCS2611Uncharacterized proteinAUQT12/AUQT12MYCS2181RubredoxinAUQT12/AQT12MYCS2211Uncharacterized proteinAUQU33/NUODMYCS2211Uncharacterized proteinAUQT12/AQT12MYCS21611Uncharacterized proteinAUQT12/AQT12MYCS2211Uncharacterized proteinAUQY12/AUQY12MYCS2211Uncharacterized p	A0QSM0 A0QSM0_MTCS2	1	1	1	Antibiotic biosynthesis monooxygenase
IntrovalIntrova	I7ENIVAUTENIVA MVCS2	4	1	1	Alashal dahudraganaga zing hinding damain protein
AOQ 106 AOQ 106 MTC322111Dirivitoly finituationAOQ N13 AOQ N13 MYCS2811ISMsm2 transposaseAOR 513 AOR 513 MYCS2211Major facilitator superfamily protein MFS 1AOQ TU4 AOQ TU4 MYCS2511TetR-family protein transcriptional regulatorAOQ ZT5 JAOQ ZT5 MYCS21311Uncharacterized proteinAOQ R32 AOQ R32 MYCS2511Cytochrome P450AOR SN2 AOR SN2 MYCS21222Uncharacterized proteinAOR SN2 AOR SN2 MYCS21222Uncharacterized proteinAOQ Y2 AOQ Y2 MYCS212211AOQ Y2 AOQ Y2 MYCS2211Glutamine synthetasesp AOQ Q38 ECCA3 MYCS2111ESX-3 secretion system protein EccA3JTFF76 JTF76 MYCS2611Uncharacterized proteinAOQ ST0 AOQ ST0 MYCS2211Uncharacterized proteinAOQ ST0 AOQ ST0 MYCS2211Uncharacterized proteinAOQ ST0 AOQ ST0 MYCS2211Uncharacterized proteinAOQ ST0 AOQ PO3 MYCS2311Uncharacterized proteinAOQ ST0 AOQ PO3 MYCS2211MFS-type efflux pump MSMEG 3705AOQ PO3 AOQ PO3 MYCS2211Uncharacterized proteinAOQ ST0 AOQ PO3 MYCS2211Uncharacterized proteinAOQ CS9 AOQ PO3 MYCS2211Uncharacterized p		2	1	1	Dihydropyrimidinggo
AQRM3 AQRM3 MTCS26111Istrikult transposeAQR513 AQR513 MYCS2211Major facilitator superfamily protein MFS 1AQQT5[AQQT5 MYCS21311TetR-family protein transcriptional regulatorAQQR32[AQQR32 MYCS2511Uncharacterized proteinAQQR32[AQQR32 MYCS2511Cytochrome P450AQR5N2[AQR3P1 MYCS21222Uncharacterized proteinAQQY2[AQQY2 MYCS23311Transcriptional regulator HTH 3 family proteinAQQY2[AQQYY2 MYCS2211Glutamine synthetasesp[AQQU33]NUOD MYCS2211NADH-quinone oxidoreductase subunit Dsp[AQQU38]ECCA3 MYCS2111ESX-3 secretion system protein EccA317FF76][7F76 MYCS2611Uncharacterized proteinAQQXW3[AQQKH2 MYCS21811RubredoxinAQR053_MYCS2411Uncharacterized proteinAQQXW3[AQQXW3 MYCS2511Two-component system response regulatorAQR737[AQR737_MYCS2111Mycocerosic acid synthaseAQQPQ3[AQQPQ3 MYCS2211Uncharacterized proteinAQQCW3[AQQR3 MYCS2211Uncharacterized proteinAQQC9[AQQPQ3 MYCS2211Uncharacterized proteinAQQC9[AQQPQ3 MYCS2211Uncharacterized proteinAQQPQ3[AQQPQ3 MYCS2211Uncharacte	A0Q108A0Q108_M1CS2	2	1	1	ISMam2 transmission
ANOR 13 JAOK 313 MTCS22111Major lacinitator superiamity protein MTFS 1AOQTU4JAOQTU4 MYCS2511TetR-family protein transcriptional regulatorAOQT3 JAOK 32 MYCS21311Uncharacterized proteinAOQR32 JAOR 32 MYCS2511Cytochrome P450AORSN2 JAORSN2 MYCS21222Uncharacterized proteinAOR 32 JAOR 32 MYCS23311Transcriptional regulator HTH 3 family proteinAOQ Y2 JAOQ Y2 MYCS2211Glutamine synthetasesplA0Q U33 JNUOD MYCS2211NADH-quinone oxidoreductase subunit DsplA0Q 38 JECCA3 MYCS2111ESX-3 secretion system protein EccA317FF76 JTFF76 MYCS2611Uncharacterized proteinAOQ TH2 JAOR THE XY MYCS21811RubredoxinAOR 053 JAOR 33 MYCS2411Uncharacterized proteinAOQ T37 JAOR 737 JAOR 737 MYCS2111Mycocerosic acid synthaseAOQ PO3 JAOQ PO3 MYCS2211Uncharacterized proteinAOQ R33 JAOQ XW3 MYCS2211Uncharacterized proteinAOQ CYS JAOQ CS1 A0Q CS2211Uncharacterized proteinAOR 737 JAOR 737 MYCS2111Uncharacterized proteinAOQ R96 JAOQ PO3 MYCS2211Uncharacterized proteinAOQ CYS JAOQYCS211Uncharacterized proteinAOQ R96 JAOQ PO3 M	AUQINIS AUQINIS_MITCS2	0	1	1	Maior facilitator superfemily motion MES 1
AOQTO4[A0QT04 MTCS2311111AOQZT5[A0QZ55_MYCS213111Uncharacterized proteinAOQR32[A0QR32_MYCS2511Cytochrome P450AORSN2[A0R5N2_MYCS21222Uncharacterized proteinAOR3P1[A0R3P1_MYCS23311Transcriptional regulator HTH 3 family proteinAOQY2[A0QYY2_MYCS2211Glutamine synthetasesplA0QU33[NUOD_MYCS2211NADH-quinone oxidoreductase subunit DsplA0Q038[ECCA3_MYCS2111ESX-3 secretion system protein EccA317FF76[J7F76 MYCS2611Uncharacterized proteinA0QT53[A0R053_MYCS2411Uncharacterized proteinA0QXW3[A0QXW3_MYCS2511Two-component system response regulatorA0QR03[A0QW3_MYCS2111Myccerosic acid synthaseA0QPQ3[A0QPQ3_MYCS2211Uncharacterized proteinA0QPQ3[A0QPQ3_MYCS2311Uncharacterized proteinA0QPQ3[A0QPQ3_MYCS2211Myccerosic acid synthaseA0QPQ3[A0QPQ3_MYCS2211Uncharacterized proteinA0QPC9[A0QPC9_MYCS2211Uncharacterized proteinA0QPC9[A0QYC9_MYCS2211Uncharacterized proteinA0QYC9[A0QYC9_MYCS2211Uncharacterized proteinA0QYC9[A0QYC9_MYCS2611Uncharacterized protein	AUK515 AUK515 WITC52	2	1	1	TatD family motion transportional regulator
AOQZ15/AOQZ32MYCS215111Olenaracterized proteinAOQR32/AOQR32MYCS2511Cytochrome P450AORSN2/AOR5N2_MYCS21222Uncharacterized proteinAOR3P1/AOR3P1MYCS23311Transcriptional regulator HTH 3 family proteinAOQY2/AOQYY2MYCS2211Glutamine synthetasesp/AOQU33/NUODMYCS2211NADH-quinone oxidoreductase subunit Dsp/AOQU38/ECCA3MYCS2111ESX-3 secretion system protein EccA317F76/I7F76MYCS2611Uncharacterized proteinAOQTH2/AOQTH2MYCS21811RubredoxinAOQR5/3/AOQST0MYCS2211Uncharacterized proteinAOQXW3/AOQXW3MYCS2511Two-component system response regulatorAOR737/AOR37MYCS2111Mycocerosic acid synthaseAOQPQ3/AOQPQ3MYCS2211Uncharacterized proteinAOQXW3/AOQXW3MYCS2211Uncharacterized proteinAOQPQ3/AOQPQ3MYCS2211Mycocerosic acid synthaseAOQPQ3/AOQPQ3MYCS2211Uncharacterized proteinAOQYC9/AOQYC9MYCS2211Uncharacterized proteinAOQPG3/AOQPG6MYCS2211Uncharacterized proteinAOQYC9/AOQYC9MYCS261	A0Q104A0Q104 MYCS2	3	1	1	Lushana atarizad matain
A0R52/A0R52MYCS211Cytochrome P450A0R5N2/A0R5N2MYCS21222Uncharacterized proteinA0R3P1/A0R3P1MYCS23311Transcriptional regulator HTH 3 family proteinA0Q3P1/A0R3P1MYCS2211Glutamine synthetasesp/A0Q033/NUODMYCS2211NADH-quinone oxidoreductase subunit Dsp/A0Q38/ECCA3MYCS22111sp/A0Q38/ECCA3MYCS2611Uncharacterized proteinA0QTH2/A0QTH2MYCS2611Uncharacterized proteinA0QST0/A0QTH2MYCS21811RubredoxinA0R053/A0R053MYCS2411Uncharacterized proteinA0QST0/A0QST0MYCS2211Mycocerosic acid synthaseA0QCV3/A0QXW3_MYCS2511Two-component system response regulatorA0QY023/A0QPQ3MYCS2311Uncharacterized proteinsp/A0QV18/MFSEPMYCS2211Mycocerosic acid synthaseA0QPQ3/A0QPQ3MYCS2211Uncharacterized proteinsp/A0QV18/MYCS2211Uncharacterized proteinsp/A0QV18/MYCS2211Uncharacterized proteinsp/A0QV18/MYCS2211Uncharacterized proteinsp/A0QV18/MYCS2611Uncharacterized proteinA0R096/A0QR96MYCS26 <td< td=""><td></td><td>15</td><td>1</td><td>1</td><td>Cata alwayse D450</td></td<>		15	1	1	Cata alwayse D450
A0R3N2/A0R3N2_MTCS212220 Indiracterized proteinA0R3P1/A0R3P1_MYCS23311Transcriptional regulator HTH 3 family proteinA0QYY2/A0QYY2_MYCS2211Glutamine synthetasesp/A0Q033/NUOD_MYCS2211NADH-quinone oxidoreductase subunit Dsp/A0Q038/ECCA3_MYCS2111ESX-3 secretion system protein EccA317FF76/I7FF76_MYCS2611Uncharacterized proteinA0QTH2/A0QTH2_MYCS21811RubredoxinA0R053/A0R053_MYCS2411Uncharacterized proteinA0QST0/A0QST0_MYCS2211Uncharacterized proteinA0QXW3/A0QXW3_MYCS2511Two-component system response regulatorA0QR93/A0QPQ3_MYCS2311Uncharacterized proteinsp/A0QVL8/MFSEP_MYCS2211MFS-type efflux pump MSMEG_3705A0QR96/A0QR96_MYCS2211Uncharacterized proteinA0QYC9/A0QYC9_MYCS2611Uncharacterized proteinA0QYC9/A0QYC9_MYCS2611Uncharacterized proteinA0QYC9/A0QYC9_MYCS2611Uncharacterized proteinA0RYS3/A0R5W3_MYCS2411Uncharacterized proteinA0RSW3/A0R5W3_MYCS2411Uncharacterized protein	AUQR32 AUQR32 MYCS2	3	1	1	Lytochrome P450
A0R3P1 A0R3P1 MYCS233111Iranscriptional regulator HTH 3 family proteinA0QYY2 A0QYY2 MYCS2211Glutamine synthetasesp A0QU33 NUOD MYCS2211NADH-quinone oxidoreductase subunit Dsp A0QQ38 ECCA3 MYCS2111ESX-3 secretion system protein EccA317FF76 I7FF76 MYCS2611Uncharacterized proteinA0QTH2 A0QTH2 MYCS21811RubredoxinA0QST0 A0QST0 MYCS2211Uncharacterized proteinA0QXW3 A0QXW3 MYCS2511Two-component system response regulatorA0R737 A0R737_MYCS2111Mycocerosic acid synthaseA0QPQ3 A0QPQ3 MYCS2311Uncharacterized proteinsp A0QYL8 MFSEP_MYCS2211MFS-type efflux pump MSMEG_3705A0QR96 A0QR96 MYCS2211Uncharacterized proteinA0QYC9 A0QYC9 MYCS2611Uncharacterized proteinA0RY37 I7G7F7_MYCS21011Uncharacterized proteinA0RY08/A0R5W3 MYCS2411Uncharacterized protein		12	2	2	
AOQTY2/AOQTY2 MYCS2211Outainine synthetasesp AOQU33 NUOD MYCS22111NADH-quinone oxidoreductase subunit Dsp AOQQ38 ECCA3 MYCS2111ESX-3 secretion system protein EccA317FF76 I7FF76 MYCS2611Uncharacterized proteinAOQTH2 AOQTH2 MYCS21811RubredoxinAOR053 AOR053 MYCS2411Uncharacterized proteinAOQXW3 AOQXW3 MYCS22111AOR737 AOR737 MYCS2111Mycocerosic acid synthaseAOQPQ3 AOQPQ3 MYCS2311Uncharacterized proteinsp AOQYL8 MFSEP_MYCS2211MFS-type efflux pump MSMEG_3705AOQPG6 AOQP66 MYCS2211Uncharacterized proteinAOQYC9 AOQYC9 MYCS2611Uncharacterized proteinAORYS9 AORSW3 MYCS2411ABC transporter quaternary amine uptake transporterAORSW3 AORSW3 MYCS2411COTP of the theorem and the termsporter	AUKSPI AUKSPI MYCS2	33	1	1	Chitemine sunthetese
sp A0QU33 NUOD_MYCS2211NADF-quinone oxtooreductase subunit Dsp A0QQ38 ECCA3_MYCS2111ESX-3 secretion system protein EccA317FF76 I7F76_MYCS2611Uncharacterized proteinA0QTH2 A0QTH2_MYCS21811RubredoxinA0R053 A0R053_MYCS2411Uncharacterized proteinA0QXW3 A0QXW3_MYCS2211Uncharacterized proteinA0QXW3 A0QXW3_MYCS2511Two-component system response regulatorA0R737 A0R737_MYCS2111Mycoccrosic acid synthaseA0QPQ3 A0QPQ3_MYCS2311Uncharacterized proteinsp A0QYL8 MFSEP_MYCS2211MFS-type efflux pump MSMEG_3705A0QPG6 A0QP6_MYCS2211Uncharacterized proteinA0QYC9 A0QYC9_MYCS2611Uncharacterized protein17G7F7]I7G7F7_MYCS21011Uncharacterized proteinA0R5W3 A0R5W3_MYCS2411Uncharacterized protein		2	1	1	Situamine synthetase
splA0QQ38JECCA3_MYCS21111ESX-3 secretion system protein EcCA317FF76J17F76_MYCS2611Uncharacterized proteinA0QTH2JA0QTH2_MYCS21811RubredoxinA0R053JA0R053_MYCS2411Uncharacterized proteinA0QST0JA0QST0_MYCS2211Uncharacterized proteinA0QXW3JA0QXW3_MYCS2511Two-component system response regulatorA0R737JA0R737_MYCS2111Mycocerosic acid synthaseA0QPQ3JA0QPQ3_MYCS2311Uncharacterized proteinsplA0QYL8 MFSEP_MYCS2211MFS-type efflux pump MSMEG_3705A0QPG6 A0QP6_MYCS2211Uncharacterized proteinA0QYC9/A0QYC9_MYCS2611Uncharacterized protein17G7F7[TG7F7_MYCS21011Uncharacterized proteinA0R5W3 JA0R5W3_MYCS2411ABC transporter quaternary amine uptake transporter	sp[A0Q033]NUOD_MYCS2	2	1	1	NADH-quinone oxidoreductase subunit D
I/FF/6 I/FF/6 MYCS2611Uncharacterized proteinA0QTH2 A0QTH2 MYCS21811RubredoxinA0R053 A0R053 MYCS2411Uncharacterized proteinA0QST0 A0QST0 MYCS2211Uncharacterized proteinA0QXW3 A0QXW3 MYCS2511Two-component system response regulatorA0R737 A0R737 MYCS2111Mycocerosic acid synthaseA0QPQ3 A0PQ3 MYCS2311Uncharacterized proteinsp A0QYL8 MFSEP_MYCS2211MFS-type efflux pump MSMEG_3705A0QR96 A0QR96 MYCS2211Uncharacterized proteinA0QYC9 A0QYC9 MYCS2611Uncharacterized proteinA0QYC9 A0QYC9 MYCS21011Uncharacterized proteinA0R5W3 A0R5W3 MYCS2411Otheracterized protein	sp A0QQ38 ECCA3 MYCS2	1	1	1	ESX-3 secretion system protein EccA3
A0Q1H2[A0Q1H2]MYCS21811RubredoxinA0R053[A0R053]MYCS2411Uncharacterized proteinA0QST0[A0QST0]MYCS2211Uncharacterized proteinA0QXW3[A0QXW3]MYCS2511Two-component system response regulatorA0R737[A0R737]MYCS2111Mycocerosic acid synthaseA0QPQ3[A0QPQ3]MYCS2311Uncharacterized proteinsp[A0QYL8]MFSEP_MYCS2211MFS-type efflux pump MSMEG_3705A0QR96[A0QR96]MYCS2211Uncharacterized proteinA0QYC9[A0QYC9]MYCS2611Uncharacterized protein17G7F7[I7G7F7_MYCS21011Uncharacterized proteinA0R5W3[A0R5W3]MYCS2411ABC transporter quaternary amine uptake transporter		6	1	1	Uncharacterized protein
A0R033 A0R053_MYCS2411Uncharacterized proteinA0QST0 A0QST0_MYCS2211Uncharacterized proteinA0QXW3 A0QXW3_MYCS2511Two-component system response regulatorA0R737 A0R737_MYCS2111Mycocerosic acid synthaseA0QPQ3 A0QPQ3_MYCS2311Uncharacterized proteinsp A0QYL8 MFSEP_MYCS2211MFS-type efflux pump MSMEG_3705A0QR96 A0QR96_MYCS2211Uncharacterized proteinA0QYC9 A0QYC9_MYCS2611Uncharacterized protein17G7F7 I7G7F7_MYCS21011Uncharacterized proteinA0R5W3 A0R5W3_MYCS2411ABC transporter quaternary amine uptake transporter	A0Q1H2 A0Q1H2_MYCS2	18	1	1	Rubredoxin
A0QS10/A0QS10MYCS2211Uncharacterized proteinA0QXW3/A0QXW3_MYCS25111Two-component system response regulatorA0R737/A0R737_MYCS2111Mycocerosic acid synthaseA0QPQ3/A0QPQ3MYCS2311Uncharacterized proteinsp A0QYL8/MFSEP_MYCS2211MFS-type efflux pump MSMEG_3705A0QR96/A0QR96MYCS2211Uncharacterized proteinA0QYC9/A0QYC9MYCS2611Uncharacterized protein17G7F7/I7G7F7_MYCS21011Uncharacterized proteinA0R5W3/A0R5W3MYCS2411ABC transporter quaternary amine uptake transporter	AURUS3 AURUS3 MYCS2	4	1	1	Uncharacterized protein
A0QXW3[A0QXW3_MYCS2511<	A0QS10 A0QS10_MYCS2	2	1	1	Uncharacterized protein
A0R/3/ A0R/3/_MYCS2 1 1 1 Mycocerosic acid synthase A0QPQ3 A0QPQ3 MYCS2 3 1 1 Uncharacterized protein sp A0QYL8 MFSEP_MYCS2 2 1 1 MFS-type efflux pump MSMEG_3705 A0QR96 A0QR96 MYCS2 2 1 1 Uncharacterized protein A0QYC9 A0QYC9 MYCS2 2 1 1 Uncharacterized protein A0QYC9 A0QYC9 MYCS2 6 1 1 Uncharacterized protein 17G7F7 I7G7F7_MYCS2 10 1 1 Uncharacterized protein A0R5W3 A0R5W3 MYCS2 4 1 1 ABC transporter quaternary amine uptake transporter	A0QXW3 A0QXW3_MYCS2	5	1	1	Iwo-component system response regulator
Augregs/Augregs/MYCS2 3 1 1 Uncharacterized protein sp Augregs/MYCS2 2 1 1 MFS-type efflux pump MSMEG_3705 Augregs/Augregs/MYCS2 2 1 1 Uncharacterized protein Augregs/Augregs/MYCS2 2 1 1 Uncharacterized protein Augregs/Augregs/MYCS2 6 1 1 Uncharacterized protein Augregs/Augregs/MYCS2 6 1 1 Uncharacterized protein I7G7F7/I7G7F7_MYCS2 10 1 1 Uncharacterized protein Augregs/Augregs/MYCS2 4 1 1 Augregs/MYCS2	AUK/37/AUK/37_MYCS2	1	1		Mycocerosic acid synthase
sp AuQYL8 MFSEP_MYCS2 2 1 1 MFS-type efflux pump MSMEG_3705 A0QR96 A0QR96 MYCS2 2 1 1 Uncharacterized protein A0QYC9 A0QYC9 MYCS2 6 1 1 Uncharacterized protein I7G7F7[I7G7F7_MYCS2 10 1 1 Uncharacterized protein A0R5W3 A0R5W3 MYCS2 4 1 1 ABC transporter quaternary amine uptake transporter	AUQPQ3 AUQPQ3 MYCS2	3	1	1	Uncharacterized protein
AUQR96 AUQR96 MYCS2 2 1 1 Uncharacterized protein A0QYC9 A0QYC9 MYCS2 6 1 1 Uncharacterized protein I7G7F7[I7G7F7_MYCS2 10 1 1 Uncharacterized protein A0R5W3 A0R5W3 MYCS2 4 1 1	sp A0QYL8 MFSEP_MYCS2	2	1	1	MFS-type efflux pump MSMEG_3705
A0QYC9 A0QYC9 MYCS2 6 1 1 Uncharacterized protein I7G7F7[I7G7F7_MYCS2 10 1 1 Uncharacterized protein A0R5W3 A0R5W3 MYCS2 4 1 1 ABC transporter quaternary amine uptake transporter	AUQR96 AUQR96_MYCS2	2	1	1	Uncharacterized protein
1/G/F/[I/G/F/_MYCS2 10 1 1 Uncharacterized protein A0R5W3 A0R5W3 MYCS2 4 1 1 ABC transporter quaternary amine uptake transporter	A0QYC9 A0QYC9_MYCS2	6	1	1	Uncharacterized protein
A0R5W3 A0R5W3 MYCS2 4 1 1 ABC transporter quaternary amine uptake transporter	I/G/F/I/G/F/_MYCS2	10	1	1	Uncharacterized protein
	A0R5W3 A0R5W3 MYCS2	4	1	1	ABC transporter quaternary amine uptake transporter

Таблица	У.2 –	- Белки	обнаруженные	В	протеоме	только	контрольного	штамма	М.	smegmatis
(msm_pN	4V261	_E)								

IPTYG1PY02_MYCS2 72 23 Andinotronsferase AQQTI4AQQH1_MYCS2 66 13 13 Uncharacterized pretrin AQQTI4AQQH1_MYCS2 55 29 DNA of RNA helease of superfamily protein II AQQTI4AQQH1_MYCS2 58 17 17 Apprinte annonal-yses AQUIAQQH1_MYCS2 54 11 11 Landoro Superfamily protein IDTIMIT_GMM_MYCS2 45 12 Platatoro Superfamily andolase IDTIMIT_GMM_MYCS2 30 11 11 AppCroxy andopse IDTIMIT_GMM_MYCS2 30 11 11 AppCroxy andopse IDTIMIT_GMM_MYCS2 30 11 ADC transpropert ATP-binding protein IDTIMIT_GMM_MYCS2 30 4 4 IS1096 timplt protein IDTIMIT_GMM_MYCS2 30 3 Radical SAM IDITIMIT_GMM_MYCS4 IDTIMIT_GMM_MYCS2 30 4 4 IS1096 timplt protein IDTIMIT_GMM_MYCS2 30 3 Radical SAM IDITIMIT_GMM_MYCS4 IDTIMITIMIT_MYCS2 31 3	Номер Uniprot	Покрытие (%)	Пептиды	Уникальные пептиды	Продукт
AQUTIALAQUTIA MYCS2 66 22 Advosine daminase AQQPEA.AQQPEA.MYCS2 55 29 DNA or RNA helicase of superfamily protein II AQQTEA.AQQPEA.AQQPEA.MYCS2 43 11 11 L-thereonine ideolase TPGUEI.DYQUES.MYCS2 43 11 11 L-thereonine ideolase TPGUEI.DYQUES.MYCS2 51 13 13 Photphashansose of sphorphocalitas sufformas/frame MARZYAMARZY MYCS2 30 11 11 Capt-CoA synthace MARZYAMARZY MYCS2 30 11 11 Capt-CoA synthace MARZYAMARZY MYCS2 30 4 4 IS1056 IngR protein MAQVCIAQUYCS MYCS2 30 4 4 IS1056 IngR protein TYS0317FSK MYCS2 0 3 Radical SM Transcriptional regulator XRP framity TPGSDIFICASM MYCS2 12 3 20G-FcIII Log Ingregator Transcriptional regulator XRP framity TPGSDIFICASM MYCS2 12 2 Alexance/card protein Transcriptional regulator XRP framity TPGSDIFICASM MYCS2 12 2 Alexanc	I7FY62 I7FY62_MYCS2	72	23	23	Amidinotransferase
AQQCH2_MYCS2 96 13 13 Uncharacterized protein AQR451[ARAS] 55 52 29 DNA or RNA helicase of aperfamily protein AQR151[ARAS] KASA 11 11 L-hecenica Adolase IPTIHWAJTHWA MYCS2 43 11 11 L-hecenica Adolase IPTIHWAJTHWA MYCS2 43 11 11 L-hecenica Adolase IPTIHWAJTHWA MYCS2 43 11 11 AcytCoA synthace IPTINSTETINS2 38 11 11 AcytCoA synthace IPTINSTETINS2 13 13 LacytCoA synthace 14 IPTINSTETINS2 13 14 AcytCoA synthace 14 IPTINSTETINS2 14 2 2 Transcriptional regulator XRLS finally 16 IPTILGSTPTIC3ANTCS2 12 3 3 Uccharacterized protein 17 IPTINSTETINS <mycs2< td=""> 14 2 2 Transcriptional regulator XRLS finally 16 IPTILGSTPTIC3ANTCS2 23 2 2 111 111</mycs2<>	A0QT14 A0QT14_MYCS2	66	22	22	Adenosine deaminase
AGRE51 JURGA51, MYCS2 55 29 DNA or RNA helicase of superfamily protein II AGDT164/AQDT164 MYCS2 43 11 11 L-direction addolose TFGDB11/FGB11, MYCS2 45 12 12 Potative ammonia-lyses TGBB11/FGB11, MYCS2 51 13 13 P-phosphoulencoins 5-phosphouling sulficetus/ferms/emetative MR2Z90A0225, MYCS2 20 11 11 HAT Charles and the superfamily superfamil	A0QQH2 A0QQH2_MYCS2	96	13	13	Uncharacterized protein
AQCTIONATIONATIONATIONATIONATIONATIONALISTICS 17 17 Appartal among advances AQCTIONATIONATIONATIONATIONATIONATIONATIONA	A0R451 A0R451_MYCS2	55	29	29	DNA or RNA helicase of superfamily protein II
PG0B13[7G0B3 WCS2 43 11 11 11 12 Delawos Sojraz-related protein PG8E1[17G3F1 MYCS2 51 13 17 Probable Sojraz-related protein Sojraz-related protein A0R229[A0R229 MYCS2 30 11 11 Acyl-CoA synthese MYCS171N32 MYCS2 38 13 13 ALC moment of Pointing protein MODOLYMODYC3 MYCS2 38 13 13 ALC moment of Pointing protein MODONYGADDYN MYCS2 30 4 4 Conff. MAPONCYS MYCS2 14 MYCS2 9 3 8 Rational SM Momentering protein TYS50TFX65 MYCS2 12 3 206-FCHI oxygenase 14 TYG1471G41 MYCS2 12 3 3 More moment system 14 TYG1471G41 MYCS2 12 3 3 More moment system protein 200-FCHI oxygenase TYG1471G41 MYCS2 13 3 Tox component system responent maxeripoinal protein 200-FCHI oxygenase 17	A0QT16 A0QT16_MYCS2	58	17	17	Aspartate ammonia-lyase
IPHFW4/HTW4/AVCS2 45 12 12 Patative Soynam-clasted protein PGR2P1/CGS1_MVCS2 51 13 3 3"phosphoadenoins" splanphoadenoins" splanphoadenoins" splanphoadenoins Apple App	I7GDH3 I7GDH3_MYCS2	43	11	11	L-threonine aldolase
ITG3EI_UTG3EI_MYCS2 51 13 13 37-phosphoadenosine 5-phosphoadenosine 5-phos	I7FHW4 I7FHW4_MYCS2	45	12	12	Putative Soj/para-related protein
Avel2CoAsymptosize 30 11 11 Acyl-CoAsymptosize PNS217PNS2 XVCS2 38 13 ABC transporter XPT-bending protein AQQVC3/MQVC3 WVCS2 63 8 Cys-RNA(Tc)CyS-RNA(CyS) descylase AQQVTQAQNYO MYCS2 63 4 4 IS1096 tupp protein AQQNYOAQQNYO MYCS2 62 3 3 Unchanceterized protein DTGS01FIGSON MYCS2 14 2 2 Transcriptional regulator XRE family DTFLG31PTCLG30 MYCS2 14 2 2 Transcriptional regulator XRE family DTFLG31PTCLG30 MYCS2 23 2 2 HIM endonuclease DYCL31PTCS1 MYCS2 24 4 Transcriptional regulator XRE family AQURC3/QUXC1 MYCS2 22 2 2 Uncharacterized protein AQUCYAJONCY MYCS2 16 3 Transcriptional regulator XRE family AQUTYAJONCY MYCS2 11 C Characterized protein TGG3DTG7G3VY MYCS2 11 C Co	I7G3E1 I7G3E1_MYCS2	51	13	13	3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS reductase)/FAD synthetase
IPFNS2IPTNS2 38 13 ABC transporter ATP-binding protein AQVC3AQVC3 MYCS2 14 6 6 Aceyt2Now IPFN3IPTN3 MYCS2 63 8 Cy-eRNA(Pro)Cy-eRNA(Cs) descylace AQNY0A(AQVY) MYCS2 30 4 HS1096 tnpR protein IFS61FTK56 KWCS2 9 3 Balical SAM IPS61FTK56 KWCS2 14 2 Transcrptional regulator XBE family IPS61FTK56 KWCS2 23 2 HNH endonuclease IPS13J7F113 MYCS2 23 2 HNH endonuclease IPS147MC31 MYCS2 12 3 3 MacC like domain protein AQQRC5/AQRCS MYCS2 12 3 AmcC like domain protein AQQRC5/AQRCS MYCS2 12 3 AmcC like domain protein AQQUTA/AQRUVS MYCS2 11 Clatanate synthase large subunit Approx AQQUTA/AQRUV MYCS2 11 Clatanate synthase large subunit Approx AQQUA/AQRUV MYCS2 11 Clatanate synthase large subunit Approx AQUTA/AGRUV MYCS2 11 Clathone monxid delydrog	A0R2Z9 A0R2Z9_MYCS2	30	11	11	Acyl-CoA synthase
AQQYC3JAQYC3 14 6 6 Acetyl-CoA acetyltransferase AQQNY0JAQQNYO WYCS2 63 8 Cyc+RNA(Cyc) dencylase AQQNY0JAQQNYO WYCS2 30 4 4 IS1096 tupp protein TGDXSIITGDXS WYCS2 9 3 Stantacetrized protein TGDXSIITGDXS WYCS2 14 2 Transcriptional regulator XRE family TFEG3ITFLGS MYCS2 12 3 3 20G-Fe(I) oxygenase TFEG3ITFLGS MYCS2 23 2 4 4 Transcriptional regulator XRE family A002XD1A00XD2 XYCS2 23 2 2 4 4 Transcriptional regulator IARE family A002XD1A00XD2 XYCS2 12 3 Mace Tile data family 4002XD1A00XD2 12 3 Mace Tile data family A002XD1A00XD2 XYCS2 12 3 Mace Tile data family 10 10 A002YD1A0QTW9_MYCS2 16 3 Transcriptional regulator Mace Tile data family 10 10 10 10 10 10	I7FN52 I7FN52_MYCS2	38	13	13	ABC transporter ATP-binding protein
ITF9V3[ITF9V3 MYCS2 63 8 Cys-tRNA(Pro)(Cys-tRNA(pro)(ys-tRNA(A0QYC3 A0QYC3_MYCS2	14	6	6	Acetyl-CoA acetyltransferase
AQ0NY0_AVY0_MYCS2 30 4 4 ISI096 inpR protein TFRX50TFRX50_MYCS2 9 3 Radical SAM TG2S0TG7RX50_MYCS2 14 2 2 TIRESGTFRX50_MYCS2 14 2 2 TIRESGTFRX50_MYCS2 12 3 3 20G-FefII oxygenase TFIGJTTG1AT MYCS2 12 3 3 20G-FefII oxygenase TFIGJTTG1AT MYCS2 25 4 4 Transcriptional regulator HR fmily A00X12/A0XDR MYCS2 22 2 2 Acyl carrier protein A00X21/A0XDR my MYCS2 12 3 MacC like domain protein A00TW1A0QTVI_MYCS2 16 3 7 Two component system response transcriptional positive regulator pholo 7GIG7DTG1GT MYCS2 2 1 1 Relativer positive 14 A0QW04/A0XPVOM VYCS2 2 1 1 Relativer positive 14 A0QW04/A0XPVOM VYCS2 5 1 1 Relativer positive 14 A0QW04/A0XPVOM VYCS2 5	I7F9V3 I7F9V3_MYCS2	63	8	8	Cys-tRNA(Pro)/Cys-tRNA(Cys) deacylase
ITGDX8J/GDX8_MYCS2 62 3 3 Uncharacterized protein ITKS6J[TFK56]/TK565 MYCS2 9 3 3 Radical SAM ITGS0J[TG250 MYCS2 14 2 2 Transcriptional regulator XRE family ITGS0J[TFL63 MYCS2 23 2 2 HNI endonuclesse ITGNUT ITG1047[IG147] MYCS2 23 2 2 Avyl carrier protein A002X12A00X12 MYCS2 34 2 2 Avyl carrier protein A00RC51A06CS MYCS2 12 3 3 MacClikk domain protein 1 A00TVIA0VI MYCS2 12 3 3 Amadobydolase 2 1 1 1 Dotable transcriptional regulatory protein 2 1 1 1 Dotable transcriptional regulatory protein 2 1	A0QNY0 A0QNY0_MYCS2	30	4	4	IS1096 tnpR protein
IPEKS61/FK56 WCS2 9 3 Radical SAM IPEKS61/FK56 WCS2 14 2 Tinsscriptional regulator XRE family IPEG31/FL56 WCS2 12 3 20G-Fe(II) oxygenase IPEG31/FL56 WCS2 23 2 14/H endonuclease IPEG31/FL56 WCS2 23 4 4 Tinsscriptional regulator ILR family AQQRE260XI2 WCS2 24 4 Tinsscriptional regulator ILR family AQQRE260XI2 WCS2 2 2 4 Insscriptional regulator Pation AQQRE260XI2 WCS2 2 2 1 Instante synthese large submit IPFD7/IJFD7 MYCS2 9 3 Antiolohydrolose 2 1 IGG7JTG107 MYCS2 9 1 Probable transcriptional regulator photein AQQWIA04QWO MYCS2 2 1 Instante synthese large submit Instante synthese large submit IGG7JTG107 MYCS2 5 1 Instante synthese large submit Instante synthese large submit IGGASITGAS	I7GDX8 I7GDX8_MYCS2	62	3	3	Uncharacterized protein
IPG250[FQ250 MYCS2 14 2 2 Transcriptional regulator XHE muly IPFLG3[IFLG3 MYCS2 23 2 2 INH endonuclease [FIG13][TFLG3 MYCS2 23 2 2 INH endonuclease [FIG13][TFLG3 MYCS2 23 2 2 INH endonuclease [FIG14][TG14] MYCS2 34 2 2 Acyl carrier protein AOQCS1A0QCS5 MYCS2 12 3 MacClike domain protein [MocRate Control of Con	17FK56 17FK56_MYCS2	9	3	3	Radical SAM
IPELG3JPTIC3 WCS2 12 3 3 20CF+fcU) exgenses IPELG3JPTIC3 WCS2 23 2 1HNI endouncies IPELG3JPTIC3 WCS2 23 4 4 Transcriptional regulator Public Manip A0QR12/04QUT WYCS2 24 2 Avyl carire protein Avyl carire protein A0QTW3/04QUTW9 MYCS2 16 3 Two component system response transcriptional positive regulator public TGIG17/IGI07 MYCS2 9 3 3 Amidohydrolase 2 ITGIG17/IGI07 MYCS2 9 1 Probable transcriptional regulator public A0QWI0AQCW1 MYCS2 9 1 Pothable transcriptional anime uninopptiduse IGIG17/IGI07 MYCS2 2 1 Carbon monoxide dehydrogenase IGIG17/IGI07 MYCS2 4 1 Pothable transcriptional anime uninopptiduse IGIG17/IGI07 XYCS2 4 1 Oxidoreductase Apouly in initional metable interviewase A0QWI0AQWI0 MYCS2 1 1 Oxidoreductase Apoul	17G2S0 17G2S0MYCS2	14	2	2	Transcriptional regulator XRE family
IPIC63/BPL63 WCS2 23 2 HNI endomiclesse IPIC63/BPL63 WCS2 23 2 Avgl carrier protein AOQRCS/AQCS WCS2 24 2 Avgl carrier protein AOQRCS/AQCS WCS2 12 3 3 MacC like domain protein IPITD7/IPITD7_MVCS2 16 3 Two component system response transcriptional positive regulator phoP AODTVI A007V1 MVCS2 9 1 1 Probable transcriptional regulatory protein A00E/IA00010 MVCS2 2 1 1 Carbon monoxide dehydrogense A00E/IA00010 MVCS2 2 1 1 RNA/RNA methyltransfress (SpoU) ITGASH/ICASA MVCS2 1 1 Peptidase MI membrane alanine aninopeptidase ITGASH/ICASA MVCS2 18 1 Uncharacterized protein A00X2A0/XO2X 5 2 1 Glutanate synthase NADH/madph snall subunit ITGASH/ICASA MVCS2 18 1 Uncharacterized protein ITGASH/ICASA MVCS2 11 1 Uncharacterized protein ITGASH/ICASA		12	3	3	2OG-Fe(II) oxygenase
I/G147/I/G147 AVS2 25 4 4 Innexprisonal regulator Potein AOQR12/A0X12 WYCS2 22 2 Uncharacterized protein AOQRTS/MORC5 MYCS2 12 3 MaoC IIk domain protein AOQTW9/MYCS2 16 3 Two component system response transcriptional positive regulator pheP AOQTVI/AOQTV1 MYCS2 9 3 Amidohydrolase 2 ITGIGT/TGIGTO MYCS2 9 1 1 AOQEVIA/A0VDV0 MYCS2 9 1 1 AOQEVIA/A0VDV0 MYCS2 2 1 1 Carbors-mooxide dehydrogenase ITGAS4[TGAS4 MYCS2 5 1 1 IRA/RNA methylinanaferase (SpoU) ITGAS4[TGAS4 1 1 Oxidoreductase AOREV7ADR2P MYCS2 4 1 1 Oxidoreductase AOREV7ADR2P MYCS2 1 1 Uncharacterized protein 1 AOREV7ADR2P MYCS2 1 1 ADREV7ADR2P MYCS2 1 1 Resperimetano	17FLG3 17FLG3 MYCS2	23	2	2	HNH endonuclease
A00RC51A0QRC5 MYCS2 24 2 2 Avgl carrier protein A00RC51A0QRC5 MYCS2 12 3 3 MaCC like domain protein TFTD7 TFTD7,MYCS2 16 3 3 Two component system response transcriptional positive regulator phoP A00TV1IA0QTV1 MYCS2 2 1 1 Glutamate synthase area submit A00TV1IA0QTV1 MYCS2 2 1 1 Glutamate synthase area submit A002N0IA0QU00 MYCS2 2 1 1 Glutamate synthase area submit A002N0IA0QU00 MYCS2 2 1 1 Carbon-monoxide dehydrogenase 17G8J7[17G8J7 MYCS2 5 1 1 URA/rRN anethylitamsetrase (SpoU) 17GAS4[17GA54 MYCS2 4 1 1 Oxidoreductase A0R2NV3/A0XCS2 18 1 1 Uncharacterized protein A00XA2/A0XCS2 18 1 1 Uncharacterized protein A00XA2/A0XCS2 10 2 1 Riske [2r-25] domain protein 17FDM01FTD6 MYCS2 10 1 1 Acetyltransferase	17G147 17G147_MYCS2	25	4	4	Transcriptional regulator HxIR family
A0QRCS MURCS 22 2 2 Uncharacterized protein A0QTW9JAQCS 12 3 3 MacC like domain protein TFTD7[J1FTD7_MYCS2 16 3 3 Two component system response transcriptional positive regulator phoP A0QTW9JAQCS1 9 3 3 Amidohydrolase 2 DTG1G7[J1G1G7] MYCS2 9 1 1 Probable transcriptional regulatory protein A0QW10JAQW10_MYCS2 2 1 1 Carbon-mooxide dehydrogenase 1 DTGAJ7[TG87] MYCS2 5 1 1 RNA/RNA methyltransferase (Sp0U) 1 TGGAJ7[TG87] MYCS2 4 1 1 Peptidase M1 methynerase (Sp1U) 1 TGD39[TG08] MYCS2 4 1 1 Oxidoreductase A0R1W15/ANCS2 9 3 MacTide glycosyltransferase 1 A0R2A3/A0R3X3 MYCS2 9 3 MacTide glycosyltransferase 1 A0R3X3/A0R3X3 MYCS2 2 1 1 Reske [2Fe-2S] domain protein 1 TFXA4/IFXW4 MYCS2 7	A0QXI2 A0QXI2_MYCS2	34	2	2	Acyl carrier protein
Aug Twy Jaou Twy Jawes 2 12 3 Made Like domain protein TFTD7/IFTD7_MYCS2 16 3 Two component system response transcriptional positive regulator phoP Aug TV1 JAOQTV1 MYCS2 2 1 1 Glutamate synthase large subunit AMD2D6 MYCS2 2 1 1 Glutamate synthase large subunit AUQ2D6 MYCS2 2 1 1 Carbon-monoxide dehydrogenase ITGGAJ[TGAS4 MYCS2 5 1 1 IRNA/rRNA methyltramsferase (SpoU) TGGAS4[TGAS4 MYCS2 5 1 1 Oxidoreductase ADR2PF/ADR2F7 MYCS2 1 2 Erythromycin setrase ADR2PT/ADR2F7 MYCS2 18 1 1 Uncharacterized protein ADX0X2 ADVCS2 5 2 1 Glutamate synthase NADH/nadph small subunit TFTGSW1[TG3W1 MYCS2 9 3 Macrolide glycosyltransferase ADX0X2 ADVCS2 1 1 Reske [2Fe-25] Gonain protein ADQXA2 AVCS2 1 1 Reske [2Fe-25] Gonain protein TFTDG1FTD6 MYCS2 1 1	A0QRC5 A0QRC5 MYCS2	22	2	2	Uncharacterized protein
IPFTD7/JTCS2 16 3 3 IPW component system repulsion repole A0QTV1/A0QTV1 MYCS2 9 3 3 Amidohydrolase 2 GIGG7/JCIG7 MYCS2 9 1 1 Probable transcriptional regulatory protein A0QWUA MYCS2 9 1 1 Probable transcriptional regulatory protein A0QWUA MYCS2 2 1 1 Carbon-monoxide dehydrogenase 17G87/JTG877 MYCS2 5 1 1 IRNA/rRN methydramsef (spot) 17G84JJTGA54 MYCS2 4 1 1 Petidase M1 membrane alanine aminopeptidase 17G029/JTGD29 MYCS2 11 2 2 Erythromycin esterase A0RU SYAQXA2 MYCS2 5 2 1 Glutamate synthase NDH/adph small subunit 17G3W1JTG3W1 MYCS2 9 3 3 Macroite glycosythransferase A0RUS3 MYCS2 2 1 1 Uncharacterized protein 17JTD6/JTD6/DYCS2 10 2 Integral membrane protein A0QUSA0AQURA6 MYCS2 10 1 Transcriptional regulator HIA family splat/sitesio	A0Q1W9 A0Q1W9_MYCS2	12		3	MaoC like domain protein
A0QTVI_IA0QTVI_MYCS2 9 3 3 Amidohydrolas2 TGG1G7[1G7] YCS2 2 1 1 Glutamate synthase large subunit A0R2D6[A0R2D6_MYCS2 2 1 1 Probable transcriptional regulatory protein A0R2D6[A0R2D6_MYCS2 2 1 1 Carbon-mooxide dehydrogenase TGG87]TGR37 TYCS2 5 1 1 Reptidase MI membrane alanine aminopeptidase TGD29]TGD29 MYCS2 4 1 1 Didoreductase A0R2H7A0R2P7 MYCS2 4 1 1 Uncharacterized protein A0R2X3_MYCS2 18 1 1 Uncharacterized protein A0R2X3_MYCS2 A0R3X3_MYCS2 2 1 1 Reise(2)/Unable and the synthase NADH/maph small subunit TGTXWI_TEXW4 MYCS2 7 1 1 Putative allantoicase (Allantoate amidinohydrolase) A0QQB6[A0QQB6_MYCS2 10 2 2 Integral membrane protein A0QUB6[A0QQB6_MYCS2 10 1 Transcriptional regulator HXR family <tr< td=""><td>I7FTD7 I7FTD7_MYCS2</td><td>16</td><td>3</td><td>3</td><td>regulator phoP</td></tr<>	I7FTD7 I7FTD7_MYCS2	16	3	3	regulator phoP
17G1G71/G1G7 2 1 1 Glutamate synthase large subunit A0R2D6/A02D6 MYCS2 2 1 1 Probable transcriptional regulatory protein A0R2D6/A02D6 MYCS2 2 1 1 Carbon-monoxide delydrogenase I7G8/11/GA54 MYCS2 4 1 1 Peptidase M1 membrane alania aminopeptidase 17G05/11/GA54 MYCS2 11 2 2 Erythromycin esterase A0R2P7A0R27 MYCS2 18 1 1 Uncharacterized protein A0R2P7A0R27 S 2 1 Glutamate synthase NADU/nadph small subunit 17G3W117G3W1 MYCS2 9 3 Macroide glycosyltransferase A0R3X3/A0R3X3 MYCS2 7 1 1 Uncharacterized protein 17FD7D167FD16 MYCS2 7 1 1 Patative allantoicase (Allantoate amidinohydrolase) A0Q0V01A0QU5 6 1 1 AcetyIransferase Macroidage grase A0Q0V01A0QU6 7 2 2 Lerythrulose-1-pho	A0QTV1 A0QTV1_MYCS2	9	3	3	Amidohydrolase 2
A082D6/A082D6 PVCS2 9 1 1 Probable transcriptional regulatory protein A09W01/A00W0 MYCS2 5 1 1 Chrobon-monoxide dehydrogenase 17GB37]17G8J7 MYCS2 5 1 1 RNA/rRNA methyltransferase (SpoU) 17GD29]17GD29 MYCS2 4 1 1 Peptidase M1 membrane alanine aminopeptidase 17GD29]17GD39 MYCS2 4 1 1 Oxidoreductase A0RU MYADRIWS MYCS2 4 1 1 Oxidoreductase A0RU MYADRIWS MYCS2 5 2 1 Glutamate synthase NADH/nadph small subunit 17G3W1[17G3W1]MYCS2 9 3 Macrolide glycosyltransferase A0R3X3A0R3X3 A0R3X3A0R3X3 MYCS2 7 1 1 Putative allantoizes (Callantota a midinohydrolase) 17FXW4[17FXW4 MYCS2 7 1 1 Putative allantoizes (Callantota a midinohydrolase) 17FXW4[17FXW4 MYCS2 10 1 1 Transcriptional regulator HxIR family A0QV10AQQ0016	I7G1G7 I7G1G7_MYCS2	2	1	1	Glutamate synthase large subunit
A0QWI0/A0QWI0_MYCS2 2 1 1 Carbon-monxide dehydrogenase 1763F31/TG831 YICS2 5 1 1 Rehydrom Series Spol 17GA541/TGA54 MYCS2 4 1 1 Peptidase M1 membrane alanine aminopeptidase 17GA541/TGA54 MYCS2 11 2 2 Erythromycin setrase A0R2P71/ARCS2 4 1 1 Oxidoreductase A0R2P71/ARCS2 5 2 1 Glutamate synthase NADH/nadph small subunit 17G3W11/TG3W1 MYCS2 9 3 Macrolide glycosytransferase A0R3X3 A0R3X3 MYCS2 1 1 Reske [2Fe-23] domain protein 17FD0[17FD16 MYCS2 10 2 2 Integral membrane protein A0Q0B6/A0Q0B6 MYCS2 10 2 2 Lerythransferase 17FY15/17FYT5 MYCS2 13 2 2 Lerythransferase 17FZ13/17FZ3 MYCS2 5 1 1 Acetvlaransferase 17B0/17A0R071 <t< td=""><td>A0R2D6 A0R2D6_MYCS2</td><td>9</td><td>1</td><td>1</td><td>Probable transcriptional regulatory protein</td></t<>	A0R2D6 A0R2D6_MYCS2	9	1	1	Probable transcriptional regulatory protein
17G87/17G87 S 1 IRNA/rRNA methyltransferase (SpoU) 17GA541/7GA54 MYCS2 4 1 1 Peptidase MI membrane alanine aminopeptidase 17GD291/7GD29 MYCS2 11 2 Erythromycin esterase A0RUK5/A0RUK5 MYCS2 18 1 1 Oxidoreductase A0RUK5/A0RUK5 MYCS2 5 2 1 Glutamate synthase NADH/nadph small subunit 17G3W1[17G3W1 MYCS2 9 3 Macrolide glycosyltransferase A0RX5/A0RX3 MYCS2 2 1 1 Reske [2Fe-2S] domain protein 17F1W41FTXW4 MYCS2 7 1 1 Putative allantoticase (Allantoate amidinohydrolase) A0QQB6[A0QQB6 MYCS2 10 1 1 Transcriptional regulator HXIR family splA0R056LERI MYCS2 10 1 1 Acetyltransferase 17F17J17F173 MYCS2 10 1 1 Acetyltransferase 17F213 MYCS2 5 1 1 Acetyltransferase	A0QWI0 A0QWI0_MYCS2	2	1	1	Carbon-monoxide dehydrogenase
17GA54JI7GA54_MYCS2 4 1 Peptidase M1 membrane alanine aminopeptidase A0R2P7[A0R2P7_MYCS2 1 2 Erythromycin esterase A0R2P7[A0R2P7_MYCS2 4 1 1 Oxidoreductase A0R2M2[A0R2P7_MYCS2 5 2 1 Glutamate synthase NADH/andph small subunit A0QXA2_MOQXA2_MYCS2 5 2 1 Glutamate synthase NADH/andph small subunit 17G3W1_MYCS2 9 3 Macrolide glycosyltransferase NADR3X3_MYCS2 2 A0R3X3[A0R3X3_MYCS2 2 1 1 Uncharacterized protein 1111261/171264 17F1D61/F1D6_MYCS2 11 1 1 Putative allantoicase (Allantoate amidinohydrolase) A0QQB64_0QQB6_MYCS2 10 2 2 Integral membrane protein A0QVD10/A0QUM0_MYCS2 6 1 1 Transcriptional regulator HxIR family sp}A0R750LERI_MYCS2 13 2 2 Lerythrulose-1-phosphate isomerase A0QR0F1/A0R07T_MYCS2 3 2 2 Amidohydrolase 1750317F173_MYCS2 5 1 1 Acyl-CoA dehydrogenase A0QR0HA0R0AYCS2	I7G8J7 I7G8J7_MYCS2	5	1	1	tRNA/rRNA methyltransferase (SpoU)
I7GD29/I7GD29 MYCS2 11 2 2 Erythromycin esterase A0R2P1/A0R2P7 MYCS2 18 1 1 Oxidoreductase A0R1W5/A0R1W5 MYCS2 18 1 1 Uncharacterized protein A0R2N2/A0RXA2 MYCS2 5 2 1 Glutamate synthase NADH/hadph small subunit I7G3W1/JYCS2 9 3 3 Macrolide glycosyltransferase A0R3X3/A0R3X3 MYCS2 2 1 1 Reske [2Fe-2S] domain protein I7F1D6/J7F1D6 MYCS2 7 1 1 Uncharacterized protein I7FXW4/J7FXW4 MYCS2 7 1 1 Heative allantoicase (Allantotate amidinohydrolase) A0QVD/04/00/VIS2 6 1 1 Acetyltransferase 1 I7FV51/7FVT5 MYCS2 13 2 2 Amidohydrolase 1 A0R071/A0K975 3 2 2 Amidohydrolase 1 1 1 A0R071/A0K97 4 1 1 Uncharacterized protein 1 1 1 1 1 1	I7GA54 I7GA54_MYCS2	4	1	1	Peptidase M1 membrane alanine aminopeptidase
A0R2P7/A0R2P7 MYCS2 4 1 1 Oxidoreductase A0R1W5/A0R1W5 MYCS2 18 1 1 Uncharacterized protein A0QXA2/A0QXA2 MYCS2 5 2 1 Glutamate synthase NADH/nadPh small subunit I7G3W1 MYCS2 9 3 3 Macrolide glycosyltransferase A0R3X3/A0X2S2 2 1 1 Rieske [2Fc-25] domain protein I7F1D6[17F1D6 MYCS2 11 1 Uncharacterized protein A0QQB6/A0QB6 MYCS2 10 2 2 Integral membrane protein A0QQB16/A0QB6 MYCS2 10 2 2 Lerythrulose-1-phosphate isomerase A0QV0/A0QV10 MYCS2 6 1 1 Transcriptional regulator HXIR family spl/A0R756[LERI MYCS2 13 2 2 Amidohydrolase A0R017/A0R077 MYCS2 3 2 2 Amidohydrolase A0QUN4/A0QUN4 MYCS2 4 1 1 Uncharacterized protein 776483/T6GR3 MYCS2 10 1 1 Transcriptional regulator EthR	I7GD29 I7GD29_MYCS2	11	2	2	Erythromycin esterase
A0R MYSIA MYCS2 18 1 1 Uncharacterized protein A0QXA2 MYCS2 5 2 1 Glutamate symbases NADH/nadph. small subunit 17G3W1[I7G3W1_MYCS2 9 3 3 Macrolide glycosyltransferase A0RX2]A0R3X3 MYCS2 2 1 1 Reiske [2Fe-2S] domain protein 17F1D6[17F1D6 MYCS2 11 1 1 Interarate and introduced protein A0QQ10[A0QQ16 MYCS2 10 2 2 Integral membrane protein A0QVI0[A0QQ16 MYCS2 6 1 1 Acetyltransferase 17FV715 MYCS2 10 1 1 Transcriptional regulator HxR family splA0R756[LER] MYCS2 3 2 2 Amidohydrolase 17FZ3]]TFZJ3 MYCS2 5 1 1 Acyl-CoA dehydrogenase A0QUN4[A0QUN4 MYCS2 4 1 1 Uncharacterized protein 17G6R3]T7663 MYCS2 1 1 HTHeyp transcriptional	A0R2P7 A0R2P7_MYCS2	4	1	1	Oxidoreductase
A0QXA2/A0QXA2 MYCS2 5 2 1 Glutanate synthase NADH/nadph small subunit 17G3W1/17CS2 9 3 3 Macrolide glycosyltransferase A0R3X3/A0R3X3 MYCS2 2 1 1 Rieske [2Fe-2S] domain protein 17FLW61/TFXW41/MYCS2 7 1 1 Putative allantociase (Allantoate amidinohydrolase) A0QQB6[A0QQB6 MYCS2 7 1 1 Putative allantociase (Allantoate amidinohydrolase) A0QQB6[A0QQB6 MYCS2 10 2 2 Integral membrane protein A0QQB6[A0QQB6 MYCS2 6 1 1 Aceyltransferase 17FVT51/FYT5 MYCS2 10 1 1 Transcriptional regulator HXIR family splA0R66/BETHR MYCS2 3 2 2 Amidohydrolase 17F213/17F213 MYCS2 5 1 1 Acyl-CoA dehydrogenase A0QUN4/A0QU14 MYCS2 3 2 2 Amidohydrolase 17G6R3/1766R3 MYCS2 1 1 Mucronacterized protein <td>A0R1W5 A0R1W5_MYCS2</td> <td>18</td> <td>1</td> <td>1</td> <td>Uncharacterized protein</td>	A0R1W5 A0R1W5_MYCS2	18	1	1	Uncharacterized protein
17/03 W1 [17/03 W1 [YC3W1 MYCS2 9 3 3 Material MYCS2 9 3 3 Material MYCS2 1 1 Ricske [2]F<-2S] domain protein	A0QXA2 A0QXA2_MYCS2	5	2	1	Glutamate synthase NADH/nadph small subunit
A0R5X3JA0R3X3 MYCS2 2 1 1 Refsk [2Fe-25] domain protein 17F1D6[17FD6 MYCS2 11 1 1 Uncharacterized protein 17FD6[17FD6 MYCS2 10 2 2 Integral membrane protein A0QV0[A0QV16 MYCS2 6 1 1 Acetyltransferase 17FVT5[17FVT5 MYCS2 10 1 1 Transcriptional regulator HxIR family splA0R756[LER1 MYCS2 13 2 2 L-eryltrulose-1-phosphate isomerase A0R071/A0R077 MYCS2 3 2 2 Amidohydrolase 17FG6B317C568 17 1 1 Muconolactone Delta-isomerase splA0R666[ETHR MYCS2 17 1 1 Muconolactone Delta-isomerase splA0R666[ETHR MYCS2 10 1 1 Thioredoxin ThiX A0B3D0/A0R3D0 MYCS2 8 1 1 LpqT protein A0R402[A0R402 MYCS2 7 2 2 Transcriptional regulator LysR family protein A0B3D0/A0R3D0 MYCS2 8 1 1 LepdT protein	1/G3W1 I/G3W1_MYCS2	9	3	3	Macrolide glycosyltransferase
$\begin{array}{rrrr} 17 JD6 JNF1D6 MYCS2 & 11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	A0R3X3 A0R3X3_MYCS2	2	1	1	Rieske [2Fe-2S] domain protein
1/17AW4/1/17AW4/MTCS2 1	1/FJD61/FJD6 MYCS2	11	1	1	Uncharacterized protein
Auggol Auggols MTCS2 10 2 2 Integral methodate protein AugVilo Augylo Auggols MTCS2 6 1 1 Acetyltransferase 17FVT5 I7FVT5 MYCS2 10 1 1 Transcriptional regulator HxIR family splA0R756[LERI MYCS2 13 2 2 L-erythrulose-1-phosphate isomerase A0R071/ANCS2 3 2 2 Amidohydrolase 17FZJ3 I7FZJ3 MYCS2 5 1 1 Acyl-CoA dehydrogenase A0QUN4 A0QUN4 MYCS2 4 1 1 Uncharacterized protein 17G6R3 I7G6R3 MYCS2 17 1 1 Muconolactone Delta-isomerase splA0R666[ETHR MYCS2 6 1 1 HTH-type transcriptional regulator EthR 17FT63 I7FT63 MYCS2 8 1 1 LpqT protein A0R402 A0R402 MYCS2 7 2 2 Transcriptional regulator LysR family protein 17GA80 I7GA80_MYCS2 4 1 2-keto-3-deoxy-galactonokinase (2-dehydro-3-deoxy-galactonokinase) splA0QWU7 MFSS5 MYCS2 7 1 1<		/	1	1	Integral membrane protein
Avgvin/hogvin/hogvin/hitsiImage: Constraint of the second se		10	1	1	
InterpretationInterpretationInterpretationapploR756[LERI MYCS21322L-erythrulose-1-phosphate isomeraseA0R077]A0R077 MYCS2322Amidohydrolase17FC33]I7F2J3 MYCS2511Acyl-CoA dehydrogenaseA0QUN4[A0QUN4_MYCS2411Uncharacterized protein17G6R3]I7G6R3 MYCS21711Muconolactone Delta-isomerasesp[A0R666]ETHR MYCS2611HTH-type transcriptional regulator EthR17F163]I7F163 MYCS2611Thioredoxin ThiXA0R402]A0R402 MYCS2722Transcriptional regulator LysR family proteinA0R402]A0R402 MYCS2722217GA80[I7GA80_MYCS241117G6N5]I7GGM5 MYCS221117G6N5]I7GGM5 MYCS27111Cobalamin biosynthesis protein CobDA0QTT8]A0QTT8 MYCS2711A0QNW9]A0QNW9_MYCS2711A0QNW9]A0QNW9_MYCS2711A0QNW9]A0QNW9_MYCS21011Clalamin biosynthesis protein CobDA0QTT8]A0QTT8 MYCS21011A0QNW9]A0QNW9_MYCS2111A0QNW9]A0QNW9_MYCS2111A0QTB7]A0QTB411A0QS31/A0QZ39 MYCS26222221A0QS31/A0QZ39 MYCS2511A0QS31/A0Q	I7EVT5U7EVT5 MVCS2	10	1	1	Transcriptional regulator HylR family
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	splA0R756/LERL MVCS2	10	2	2	L_erythrulose_1_phosphate isomerase
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A0R077 A0R077 MYCS2	3	2	2	Amidohydrolase
Angun JangenDDDAngun JangenDDDITG6R3][7G6R3 MYCS2171Duncharacterized proteinITG6R3][7G6R3 MYCS2611HTH-type transcriptional regulator EthRITFT63][1FT63] MYCS261ITFT63][1FT63] MYCS261ITG768][7G6R3 MYCS2101A0R3D0]A0R3D0 MYCS281LpqT proteinLpqT proteinA0R402]A0R402 MYCS272ZTranscriptional regulator LysR family proteinI7GA80][17GA80_MYCS24112-keto-3-deoxy-galactonokinasesp]A0QWU7][MFS55 MYCS2211Probable triacylglyceride transporter17GGM5][17GGM5 MYCS2422Glutamine synthetase catalytic domain putative17G4V9][7G4V9 MYCS2711Uncharacterized proteinA0QNW9]A0QNW9_MYCS2411BadF/BadG/BerA/BcrD ATPase family proteinA0QTB7]A0QTB7 MYCS21711Uncharacterized proteinA0QTB7]A0QTB7 MYCS222222Putative ATP-dependent DNA helicase (UvrD/REP)A0QZ39[A0QZ39 MYCS2511Cation ABC transporter ATP-binding protein putativeA0QZ39[A0QZ39 MYCS2511MaoC family proteinA0QZ39[A0QZ39 MYCS2311Uncharacterized protein17FNW3][7FNW3]MYCS2411<	I7FZJ3U7FZJ3 MYCS2	5	1	1	Acyl-CoA dehydrogenase
TYG6R3[17G6R3_INYCS21711Muconolactone Delta-isomerasesp A0R666[ETHR_MYCS2611HTH-type transcriptional regulator EthR17FT63]17FT63_MYCS21011Thioredoxin ThiXA0R3D0[A0R3D0_MYCS2811LpqT proteinA0R402[A0R402_MYCS2722Transcriptional regulator LysR family protein17G6R3[17GA80_MYCS2411Cketo-3-deoxy-galactonokinase17GA80[17GA80_MYCS2411eoxygalactonokinasesp A0QWU7]MFS55_MYCS2211Probable triacylglyceride transporter17GGM5[17GGM5_MYCS2422Glutamine synthetase catalytic domain putative17G4V9[17G4V9_MYCS2711Cobalamin biosynthesis protein CobDA0QTT8[A0QTT8_MYCS2711Uncharacterized proteinA0QTB7[A0QTB7_MYCS21011CTP pyrophosphohydrolaseA0QTB7[A0QTB7_MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0Q239[A0Q239_MYCS2622Sec-independent protein translocase protein TatCA0Q239[A0Q239_MYCS2511Cation ABC transporter ATP-binding protein putativeA0Q239[A0Q2W5_MYCS21311MaoC family proteinA0Q239[A0QZW5_MYCS2311Purine catabolism PurC domain proteinA0Q239[A0QZW5_MYCS2411MaoC family proteinA0Q239[A0QZW5_MYCS2411Amino acid permease-as	A00UN4 A00UN4 MYCS2	4	1	1	Uncharacterized protein
sp A0R666 ETHR_MYCS2611HTH-type transcriptional regulator EthR17FT63 I7FT63_MYCS21011Thioredoxin ThiXA0R3D0 A0R3D0_MYCS2811LpqT proteinA0R402 A0R402_MYCS2722Transcriptional regulator LysR family protein17GA80 I7GA80_MYCS24112-keto-3-deoxy-galactonokinasesp A0QWU7 MFS55_MYCS2211Probable triacylglyceride transporter17GGM5 I7GGM5_MYCS2422Glutamine synthetase catalytic domain putative17G4V9 I7G4V9_MYCS2711Cobalamin biosynthesis protein CobDA0QTT8 A0QTT8_MYCS2711Uncharacterized proteinA0QXB/A0QNW9_MYCS2411BadF/BadG/BerA/BerD ATPase family proteinA0QTB7 A0QTB7_MYCS21011CTP pyrophosphohydrolaseA0QTB7 A0QTB7_MYCS21711Uncharacterized protein17G5D1 17G5D1_MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0QZ39 A0QZ39_MYCS2622Sec-independent protein translocase protein TatCA0QS94 A0QS94_MYCS2511Cation ABC transporter ATP-binding protein putativeA0QZW5 A0QZW5_MYCS2311Purine catabolism PurC domain protein17FNW3 I7FNW3_MYCS2411Amoc family protein17FNW3 I7FNW3_MYCS2411Amico acid permease-associated regionA0QZTS]A0QZS5_MYCS231	I7G6R3 I7G6R3 MYCS2	17	1	1	Muconolactone Delta-isomerase
TYFT63 I7FT63MYCS21011Thioredoxin ThiXA0R3D0 A0R3D0MYCS2811LpqT proteinA0R402 A0R402MYCS2722Transcriptional regulator LysR family protein17GA80 I7GA80_MYCS24112-keto-3-deoxy-galactonokinase(2-dehydro-3-deoxygalactonokinase)sp A0QWU7 MFS55MYCS2211Probable triacylglyceride transporter17GGMS1/7GMS5MYCS2422Glutamine synthetase catalytic domain putative17G4V9 I7G4V9MYCS2711Cobalamin biosynthesis protein CobDA0QTT8 A0QTT8MYCS2711Uncharacterized proteinA0QNW9 A0QNW9MYCS21011CTP pyrophosphohydrolaseA0QT87 A0QTB7MYCS21011Uncharacterized proteinA0QT87 A0QTB7MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0Q239 A0QZ39MYCS2622Sec-independent protein translocase protein TatCA0Q239 A0QZ39MYCS21311MaoC family proteinA0QZW5 A0QZW5MYCS2311Purine catabolism Purc domain protein17FME6 I7FME6MYCS2411Amino acid permease-associated regionA0QZ39 A0QZ39MYCS2411Amino acid permease-associated region	sp A0R666 ETHR MYCS2	6	1	1	HTH-type transcriptional regulator EthR
A0R3D0 A0R3D0 MYCS2811LpqT proteinA0R402 A0R402 MYCS2722Transcriptional regulator LysR family protein17GA80 I7GA80_MYCS24112-keto-3-deoxy-galactonokinase (2-dehydro-3-deoxygalactonokinase)sp A0QWU7 MFS55 MYCS2211Probable triacylglyceride transporter17GGM5 I7GGM5 MYCS2422Glutamine synthetase catalytic domain putative17G4V9 I7G4V9 MYCS2711Cobalamin biosynthesis protein CobDA0QTT8 A0QTT8 MYCS2711Uncharacterized proteinA0QW9 A0QNW9 MYCS2411BadF/BadG/BerA/BerD ATPase family proteinA0R2K6 A0R2K6 MYCS21011CTP pyrophosphohydrolaseA0QTB7 A0QTB7 MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0QZ39 A0QZ39 MYCS2622Sec-independent protein translocase protein TatCA0QS94 A0QS94_MYCS2511Cation ABC transporter ATP-binding protein putativeA0QZW5 A0QZW5 MYCS21311MaoC family protein17FM86 I7FM66 MYCS2311Purine catabolism PurC domain protein17FNW3 I7FNW3 MYCS2411Uncharacterized protein	I7FT63 I7FT63 MYCS2	10	1	1	Thioredoxin ThiX
A0R402 A0R402 MYCS2722Transcriptional regulator LysR family proteinI7GA80 I7GA80_MYCS24112-keto-3-deoxy-galactonokinase (2-dehydro-3-deoxygalactonokinase)sp A0QWU7 MFS55 MYCS2211Probable triacylglyceride transporter17GGM5 I7GGM5 MYCS2422Glutamine synthetase catalytic domain putative17G4V9 I7G4V9 MYCS2711Cobalamin biosynthesis protein CobDA0QTT8 A0QTT8 MYCS2711Uncharacterized proteinA0QWW9 A0QNW9 MYCS2411BadF/BadG/BetrA/BerD ATPase family proteinA0QTB7 A0QTB7 MYCS21011CTP pyrophosphohydrolaseA0QTB7 A0QTB7 MYCS21711Uncharacterized proteinI7G5D1 I7G5D1 MYCS22222Putative ATP-dependent DNA helicase (UvrD/REP)A0QZ39 A0QZ39 MYCS2622Sec-independent protein translocase protein TatCA0QS94 A0QS94_MYCS2111Cation ABC transporter ATP-binding protein putativeA0QZW5 A0QZW5 MYCS21311MaoC family protein17FME6 TFME6 MYCS2311Purine catabolism Purc domain protein17FNW3 I7FNW3 MYCS2411Amino acid permease-associated regionA0QZW5 A0QST3 MYCS2411Uncharacterized protein	A0R3D0 A0R3D0 MYCS2	8	1	1	LpqT protein
I7GA80 I7GA80_MYCS24112-keto-3-deoxy-galactonokinase (2-dehydro-3-deoxygalactonokinase)sp A0QWU7 MFS55 MYCS2211Probable triacylglyceride transporterI7GGM5 I7GGM5 MYCS2422Glutamine synthetase catalytic domain putativeI7GAV9 I7G4V9 MYCS2711Cobalamin biosynthesis protein CobDA0QTT8 A0QTT8 MYCS2711Uncharacterized proteinA0QNW9 A0QNW9_MYCS2411BadF/BadG/BerA/BerD ATPase family proteinA0R2K6 A0R2K6 MYCS21011CTP pyrophosphohydrolaseA0QTB7 A0QTB7 MYCS21711Uncharacterized proteinI7G5D1 I7G5D1_MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0Q239 A0QZ39 MYCS2622Sec-independent protein translocase protein TatCA0QS94 A0QS94_MYCS2511Cation ABC transporter ATP-binding protein putativeA0QZW5 A0QZW5 MYCS21311MaoC family protein17FME6 I7FME6 MYCS2311Purine catabolism PurC domain protein17FNW3 I7FNW3 MYCS2411Uncharacterized protein	A0R402 A0R402 MYCS2	7	2	2	Transcriptional regulator LysR family protein
In Gradol / Gr	I7GA80U7GA80 MVCS2	4	1	1	2-keto-3-deoxy-galactonokinase (2-dehydro-3-
sp A0QwU/ MFS55_MYCS2211Probable tracylgityceride transporter17GdV5 I7GGM5_MYCS2422Glutamine synthetase catalytic domain putative17G4V9 I7G4V9_MYCS2711Cobalamin biosynthesis protein CobDA0QTT8 A0QTT8_MYCS2711Uncharacterized proteinA0QNW9 A0QNW9_MYCS2411BadF/BadG/BcrA/BcrD ATPase family proteinA0R2K6 A0R2K6_MYCS21011CTP pyrophosphohydrolaseA0QTB7 A0QTB7_MYCS21711Uncharacterized protein17G5D1 I7G5D1_MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0QZ39 A0QZ39_MYCS2622Sec-independent protein translocase protein TatCA0QS94 A0QS94_MYCS2811LprB proteinA0QZW5 A0QZW5_MYCS21311MaoC family protein17FMS3 I7FNW3_MYCS2311Purine catabolism PurC domain protein17FNW3 I7FNW3_MYCS2411Amino acid permease-associated regionA0QST3 A0QST3_MYCS2411Uncharacterized protein		7	1	1	deoxygalactonokinase)
I/GGMS/I/GGMS_MYCS2422Glutamine synthetase catalytic domain putativeI7G4V9/I7G4V9_MYCS2711Cobalamin biosynthesis protein CobDA0QTT8/A0QTT8_MYCS2711Uncharacterized proteinA0QNW9/A0QNW9_MYCS2411BadF/BadG/BcrA/BcrD ATPase family proteinA0R2K6/A0R2K6_MYCS21011CTP pyrophosphohydrolaseA0QTB7/A0QTB7_MYCS21711Uncharacterized proteinI7G5D1/I7G5D1_MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0QZ39/A0QZ39_MYCS2622Sec-independent protein translocase protein TatCA0QS94/A0QS94_MYCS2811LprB proteinA0QZW5/A0QZW5_MYCS2511Cation ABC transporter ATP-binding protein putativeA0QZW5/A0QZW5_MYCS2311Purine catabolism PurC domain protein17FNW3/I7FNW3_MYCS2411Amino acid permease-associated regionA0QST3/A0QST3_MYCS2411Uncharacterized protein	sp A0QWU7 MFS55_MYCS2	2	1	1	Probable triacylglyceride transporter
I/G4V9[I/G4V9_MYCS2/IICobalamin biosynthesis protein CobDA0QTT8[A0QTT8_MYCS2711Uncharacterized proteinA0RNW9[A0QNW9_MYCS2411BadF/BadG/BcrA/BcrD ATPase family proteinA0R2K6[A0R2K6_MYCS21011CTP pyrophosphohydrolaseA0QTB7[A0QTB7_MYCS21711Uncharacterized proteinI7G5D1[I7G5D1_MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0QZ39[A0QZ39_MYCS2622Sec-independent protein translocase protein TatCA0QS94[A0QS94_MYCS2811LprB proteinA0R532[A0R532_MYCS2511Cation ABC transporter ATP-binding protein putativeA0QZW5[A0QZW5_MYCS21311MaoC family protein17FME6[I7FME6_MYCS2311Purine catabolism PurC domain protein17FNW3]I/FNW3 MYCS2411Uncharacterized protein	I/GGM5 I/GGM5_MYCS2	4	2	2	Glutamine synthetase catalytic domain putative
Augrins <t< td=""><td>1/G4V91/G4V9 MYCS2</td><td>/ 7</td><td>1</td><td>1</td><td>Lus have staving a matrix</td></t<>	1/G4V91/G4V9 MYCS2	/ 7	1	1	Lus have staving a matrix
AOQINW9[AOQINW9_MTCS2411Badr/Badd/BerA/BerD AlPase family proteinAOQ2K6[A0R2K6 MYCS21011CTP pyrophosphohydrolaseAOQTB7[A0QTB7 MYCS21711Uncharacterized proteinI7G5D1[I7G5D1_MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0QZ39[A0QZ39 MYCS2622Sec-independent protein translocase protein TatCA0QS94[A0QS94_MYCS2811LprB proteinA0R532[A0R532_MYCS2511Cation ABC transporter ATP-binding protein putativeA0QZW5[A0QZW5 MYCS21311MaoC family protein17FME6[I7FME6 MYCS2311Purine catabolism PurC domain protein17FNW3[I7FNW3 MYCS2411Amino acid permease-associated regionA0QST3[A0QST3 MYCS2411Uncharacterized protein	AUQII8 AUQII8 MYCS2	/	1	1	Uncharacterized protein
AOUZENCIANCE MTC521011CTP pyrophosphonydrolaseA0QTB7 A0QTB7 MYCS21711Uncharacterized protein17G5D1 I7G5D1 MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0QZ39 A0QZ39 MYCS2622Sec-independent protein translocase protein TatCA0QS94 A0QS94_MYCS2811LprB proteinA0R532 A0R532 MYCS2511Cation ABC transporter ATP-binding protein putativeA0QZW5 A0QZW5 MYCS21311MaoC family protein17FME6 I7FME6 MYCS2311Purine catabolism PurC domain protein17FNW3 I7FNW3 MYCS2411Uncharacterized protein	AUQINWS AUQINWS WIYCS2	4	1	1	CTP pyrophosphohydrologo
INGED/INGED/INTEG2ITIIIITGSD1/ITGSD1/MYCS2222Putative ATP-dependent DNA helicase (UvrD/REP)A0QZ39/A0QZ39/MYCS2622Sec-independent protein translocase protein TatCA0QS94/A0QS94_MYCS2811LprB proteinA0R532/A0R532_MYCS2511Cation ABC transporter ATP-binding protein putativeA0QZW5/A0QZW5_MYCS21311MaoC family proteinITFME6/I7FME6MYCS2311Purine catabolism PurC domain protein1Furine catabolism PurC domain proteinITFNW3/I/TFNW3MYCS2411A0QST3/A0QST3MYCS2411	AUNZKUJAUKZKU MYCSZ	10	1	1	Uncharacterized protein
AOQZ39 AOQZ39 MYCS2 6 2 2 Putative AI P-dependent DNA hericase (UVD/REP) AOQZ39 AOQZ39 MYCS2 6 2 2 Sec-independent protein translocase protein TatC AOQS94 AOQS94_MYCS2 8 1 1 LprB protein AOR532 AOR532_MYCS2 5 1 1 Cation ABC transporter ATP-binding protein putative AOQZW5 AOQZW5_MYCS2 13 1 1 MaoC family protein 17FME6[17FME6_MYCS2 3 1 1 Purine catabolism PurC domain protein 17FNW3][7FNW3 MYCS2 4 1 1 Uncharacterized protein	I7G5D1/J7G5D1 MVCS2	1/ 2	2	2	Putative ATP_dependent DNA haliages (LiveD/DED)
Avg25/140g294_MYCS2 8 1 1 LprB protein A0R532_A0R532_MYCS2 8 1 1 LprB protein A0QZW5]A0QZW5_MYCS2 5 1 1 Cation ABC transporter ATP-binding protein putative A0QZW5]A0QZW5_MYCS2 13 1 1 MaoC family protein 17FME6[17FME6_MYCS2 3 1 1 Purine catabolism PurC domain protein 17FNW3]I/7FNW3_MYCS2 4 1 1 Amino acid permease-associated region A0QST3]A0QST3_MYCS2 4 1 1 Uncharacterized protein	A00739 A00739 MVCS2	<u> </u>	2	2	Sec_independent protein translocase protein TatC
AQCS71PROST_MYCS2 5 1 1 Ppi b protein A0R532 A0R532 MYCS2 5 1 1 Cation ABC transporter ATP-binding protein putative A0QZW5 A0QZW5 MYCS2 13 1 1 MaoC family protein 17FME6[I7FME6 MYCS2 3 1 1 Purine catabolism PurC domain protein 17FNW3]I7FNW3 MYCS2 4 1 1 Amino acid permease-associated region A0QST3 A0QST3 MYCS2 4 1 1 Uncharacterized protein	A00894 A00894 MVC82	8	1	1	LnrB protein
A0QZW5/A0QZW5 MYCS2 13 1 1 Cardina Abe transporter All botter A	A0R532 A0R532 MVCS2	5	1	1	Cation ABC transporter ATP-binding protein putative
INSCRIPTING INSCRIPTING ITFME6 I7FME6 MYCS2 3 1 ITFNW3 I7FNW3 MYCS2 4 1 1 Amino acid permease-associated region A0QST3 A0QST3 MYCS2 4 1 1 Uncharacterized protein	A00ZW5 A00ZW5 MYCS2	13	1	1	MaoC family protein
ITENNES ITENNES ITENNES ITENNES ITENNES ITENNES ITENNES ITENNES ITENNES MYCS2 ITENNES ITENNES A0QST3 MYCS2 ITENNES ITENNES ITENNES ITENNES ITENNES	I7FME6II7FME6 MYCS2	3	1	1	Purine catabolism PurC domain protein
A0QST3 A0QST3 MYCS2 4 1 1 Uncharacterized protein	I7FNW3II7FNW3 MYCS2	4	1	1	Amino acid permease-associated region
	A0QST3 A0QST3 MYCS2	4	1	1	Uncharacterized protein

Номер Uniprot	Покрытие (%)	Пептиды	Уникальные пептиды	Продукт	
I7G232 I7G232_MYCS2	6	1	1	Putative transcriptional regulatory protein TetR	
A0QWB1 A0QWB1_MYCS2	8	1	1	Acyl-CoA dehydrogenase	
A0R1F7 A0R1F7_MYCS2	4	1	1	Uncharacterized protein	
A0QQ85 A0QQ85_MYCS2	2	1	1	FAD dependent oxidoreductase	
A0R3A8 A0R3A8_MYCS2	12	1	1	Transcriptional regulator ArsR family protein	
A0R5H8 A0R5H8 MYCS2	2	1	1	Gaba permease	
A0R2M4 A0R2M4_MYCS2	2	1	1	Na+/solute symporter	
sp A0QS29 RECB_MYCS2	2	2	2	RecBCD enzyme subunit RecB	
I7G6Z8 I7G6Z8_MYCS2	11	1	1	Transcriptional regulator TetR family	
A0R5X2 A0R5X2_MYCS2	14	1	1	Transcriptional regulator	
I7G9B3 I7G9B3_MYCS2	3	1	1	Transcriptional regulator IclR family	
A0R228 A0R228_MYCS2	8	1	1	Uncharacterized protein	
A0QRM8 A0QRM8_MYCS2	5	1	1	Cadmium inducible protein cadi	
ACODZ4 ACODZ4 MYCS2	4	1	1	FAD binding domain in molybdopterin dehydrogenase	
A0QRZ4 A0QRZ4_MTCS2	4	1	1	protein	
I7GFJ0 I7GFJ0_MYCS2	6	1	1	Transcriptional regulator PadR-like protein	
A0QZW7 A0QZW7_MYCS2	10	1	1	Transcriptional regulator ArsR family protein	
I7G867 I7G867_MYCS2	4	2	2	Succinate semialdehyde dehydrogenase	
I7G0I9 I7G0I9_MYCS2	3	1	1	Hydrogenase expression/formation protein hypE	
A0R1B9 A0R1B9_MYCS2	2	1	1	Alpha-amylase family protein	
sp A0QRX9 PHD_MYCS2	12	1	1	Antitoxin Phd	
I7G371 I7G371_MYCS2	7	1	1	Alcohol dehydrogenase GroES-like protein	
A0R715 A0R715_MYCS2	5	1	1	Transcriptional regulator GntR family protein	
A0QR41 A0QR41_MYCS2	10	1	1	Uncharacterized protein	
A0R700 A0R700_MYCS2	8	1	1	DNA-binding protein	
A0QYZ0 A0QYZ0_MYCS2	5	1	1	Integral membrane protein	
A0QRA3 A0QRA3_MYCS2	21	1	1	Uncharacterized protein	
A0R3Y9 A0R3Y9_MYCS2	5	1	1	Uncharacterized protein	
A0QS16 A0QS16_MYCS2	7	1	1	Transporter small conductance mechanosensitive ion channel (MscS) family protein	
A0R0C6 A0R0C6 MYCS2	2	1	1	Tetratricopeptide repeat family protein	
I7FUW8 I7FUW8 MYCS2	7	1	1	Uncharacterized protein	
A0QW52 A0QW52 MYCS2	9	1	1	Uncharacterized protein	
A0R2R5 A0R2R5 MYCS2	4	1	1	Uncharacterized protein	
A0R1P6 A0R1P6 MYCS2	3	1	1	Alcohol dehydrogenase zinc-binding	
A0QT77 A0QT77 MYCS2	2	1	1	Fatty acid desaturase	
A0R3P8 A0R3P8 MYCS2	3	1	1	Uncharacterized protein	
17FI03 17FI03 MYCS2	3	1	1	Uncharacterized protein	
A0QZ44 A0QZ44 MYCS2	6	1	1	Uncharacterized protein	
I7GAI3 I7GAI3_MYCS2	3	1	1	Photosystem I assembly BtpA	
I7FU34 I7FU34 MYCS2	4	1	1	Phosphoglycerate mutase	
A0R2P8 A0R2P8 MYCS2	6	1	1	TetR-family protein transcriptional regulator	
I7FYG9 I7FYG9 MYCS2	1	1	1	Kojibiose phosphorylase	
I7FYG6 I7FYG6 MYCS2	9	1	1	Uncharacterized protein	
A0R275 A0R275 MYCS2	12	1	1	Uncharacterized protein	
I7FRQ1 I7FRQ1 MYCS2	8	1	1	Transcriptional regulator HxlR family	
A0QYV5 A0QYV5_MYCS2	11	1	1	Uncharacterized protein	
A0R6B3 A0R6B3 MYCS2	10	1	1	Uncharacterized protein	
A0R1Z8 A0R1Z8_MYCS2	6	1	1	Uncharacterized protein	
A0QYK3 A0QYK3_MYCS2	9	1	1	Uncharacterized protein	
I7G668 I7G668_MYCS2	2	1	1	Luciferase-like protein	
I7FW29 I7FW29_MYCS2	2	1	1	Acyl-CoA dehydrogenase	
A0R4D9 A0R4D9_MYCS2	3	1	1	Nucleoside-diphosphate-sugar epimerase	
I7FRL5 I7FRL5_MYCS2	2	1	1	IS629 transposase orfB	
A0QZW2 A0QZW2_MYCS2	2	1	1	Ribose transport ATP-binding protein RbsA	

Приложение Ф

Различия в секретомах штамма *M. smegmatis* с гетерологичной транскрипцией MTS1338 и штамма с контрольным вектором

Таблица Ф.1 – Белки, обнаруженных в секретоме только штамма *M. smegmatis* с гетерологичной транскрипцией MTS1338 (msm_pMV261_1338)

Номер Uniprot	Уникальные пептиды	Продукт	Ген	<i>M. tuberculosis</i> ортолог	Функциональная категория
A0QY05	7	SGNH_hydro domain- containing protein	MSMEG_3489	Rv0518	Cell wall and cell processes
A0QV35	3,7	Putative D-alanyl-D- alanine carboxypeptidase Dacb2 (Penicillin- binding protein)	MSMEG_2433	Rv2911	Cell wall and cell processes
A0QRU0	3	Uncharacterized protein	MSMEG_1237	no	
A0R773	2,7	Sugar ABC transporter substrate-binding protein	MSMEG_6804	no	
A0QQ67	2,7	GH16 domain- containing protein	MSMEG_0645	no	
A0R639	2,3	Septum_form domain- containing protein	MSMEG_6414	Rv3835	Cell wall and cell processes
A0R445	2,3	Secreted protein	MSMEG_5700	Rv0867c	Cell wall and cell processes
A0QQY6	2,3	Uncharacterized protein	MSMEG_0921	Rv0477	Cell wall and cell processes
A0QP20	2,3	MHB domain- containing protein	MSMEG_0243	no	
A0QNK4	2,3	Antigen MTB48 ESX-1 secreted protein B PE domain	MSMEG_0076	Rv3881c	Cell wall and cell processes

Номер Uniprot	Уникальные пептиды	Продукт	Ген	<i>M. tuberculosis</i> ортолог	Функциональная категория
I7G354	5,0	Secreted antigen 85-C FbpC	MSMEG_3580	Rv0129c	Lipid metabolism
A0QR29	3,3	Porin MspA	MSMEG_0965	no	
A0QRM0	3	UPF0234 protein	MSMEG_1165	Rv0566c	Conserved hypotheticals
A0R4A7	3	DUF732 domain- containing protein	MSMEG_5766	no	
A0QV51	2,7	Methylmalonate- semialdehyde dehydrogenase	MSMEG_2449	no	
A0R061	2,3	HesB/YadR/YfhF family protein	MSMEG_4272	Rv2204c	Conserved hypotheticals

Таблица Ф.2 – Белки обнаруженные в секретоме только контрольного штамма *M. smegmatis* (msm_pMV261_E)

Приложение Х

Подтверждение результатов протеомного профилирования *M. smegmatis* на транскриптомном уровне

Рисунок X.1 – Подтверждение результатов протеомного профилирования *M. smegmatis* на транскриптомном уровне с помощью метода количественной ОТ-ПЦР в двух фазах роста M. smegmatis: логарифмической (LOG) и стационарной (STAT); *p < 0,05, ND – транскрипция не детектирована